SRI CHAITANYA EDUCATIONAL INSTITUTIONS,INDIA.

A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARASHTRA,DELHI,RANCHI,CHANDIGARH

NEET PART TEST-1
Max. Marks : 720

1. The Model NEET- 2019 is of $\mathbf{3}$ Hrs duration.
2. The question paper for NEET-2019 consists of 180 questions comprising 45 questions in Botany, 45 in Zoology, 45 in Physics and 45 in Chemistry for NEET.
3. All questions are of objective type (Multiple choices only)
4. Each question carries four marks.
5. Negative marking: one mark will be deducted for every wrongly answered question.
6. Total Marks 720.
7. The candidates are prohibited from carrying any paper to the examination hall except HALL TICKET.
8. No Calculators, Mini-Cards, Watches with Calculators, Pager, Cell Phone, Slide rules or outer aids to calculation will be allowed in the examination hall.
9. Use Blue/Black Ball Point Pen only to darken the appropriate circle. Answers marked with pencil would not be evaluated.

* PART TEST-1 SYLLABUS:

* BOTANY: Diversity in the Living World, Biological Classification, Plant Kingdom, Morphology of flowering plants.
* ZOOLOGY: Human Physiology
* PHYSICS: Units and measurement, Motion in a straight line, Motion in a plane, Laws of Motion, Work power energy, System of particles and rotational motion, Gravitation.
* CHEMISTRY: Atomic structure , Periodic classification of elements, Chemical bonding , Stoichiometry , States of matter, Chemical \& Ionic equilibrium, Thermodynamics, Hydrogen and its compounds.

BOTANY:

1. How many of the following properties are the defining characteristics of living organisms?

Growth, reproduction, metabolism, cellular organisation, consciousness
(1) 2
(2) 3
(3) 4
(4) 5
2. The title 'Alexander Agassiz Professor of Zoology Emeritus' goes to
(1) P. Maheswari
(2) R. Mishra
(3) E. Mayr
(4) G. N. Ramachandran
3. Each organism that you see, represents a
(1) Species
(2) Genus
(3) Population
(4) Family
4. Recognise the following flow diagram and find the correct option according to taxonomic hierarchy.

(1) a - Sapindales, b - Anacardiaceae
(3) a - Polymoniales, b-Solanaceae
(4) a - Solanaceae, b-Polymoniales
5. Wheat and mango belong to same
(1) Order
(2) Class
(3) Division
(4) Both 2 and 3
6. Which of the following statements regarding universal rules of nomenclature is wrong?
(1) Both the words in a biological name, when handwritten are separately underlined.
(2) The first word in a biological name represents the genus and starts with capital letter
(3) The second word denoting the species and starts with small letter.
(4) Biological names are generally in Greek and are written in italics.
7. Which of the following combinations is correct for wheat?
(1) Genus : Triticum, Family : Poaceae, Order : Poales, Class : Dicotyledonae
(2) Genus : Triticum, Family : Poaceae, Order : Sapindales, Class :
Monocotyledonae
(3) Genus : Triticum, Family : Poaceae,

Order : Poales, Class : Monocotyledonae
(4) Genus : Triticum, Family :

Anacardiaceae, Order : Poales, Class :
Monocotyledonae
8. Match the columns I and II, and choose the correct combination from the options given.

Column-I Column-II

A) Wheat
I) Primata
B) Mango
II) Diptera
C) Housefly
III) Sapindales
D) Man
IV) Poales
(1) $\mathrm{A}-1, \mathrm{~B}-2, \mathrm{C}-4, \mathrm{D}-3$
(2) $\mathrm{A}-4, \mathrm{~B}-3, \mathrm{C}-2, \mathrm{D}-1$
(3) $\mathrm{A}-2, \mathrm{~B}-4, \mathrm{C}-1, \mathrm{D}-3$
(4) $\mathrm{A}-3, \mathrm{~B}-4, \mathrm{C}-2, \mathrm{D}-1$
9. The unique and unified character of plantae of Whittacker is
(1) Non Chlorophyllous autotrophism
(2) Same pattern of alternation of generations
(3) Method of reproduction
(4) Cell wall, mainly made up of cellulose
10. Which of the following is a bacterial disease in plants?
(1) Late blight of potato
(2) Mosaic disease of tobacco
(3) Citrus canker
(4) Potato spindle tuber disease
11. Which bacteria are most abundant in nature?
(1) Archaebacteria
(2) Photosynthetic autotrophic bacteria
(3) Chemosynthetic autotrophic bacteria
(4) Heterotrophic bacteria
12. Bacteria multiply mainly by
(1) Fission
(2) Budding
(3) Conjugation
(4) Transduction
13. I) Unicellular, colonial, filamentous, marine or terrestrial forms.
II) Gelatinous sheath around the colonies.
III) Some are heterocystous $\mathbf{N}_{\mathbf{2}}$ fixers.
IV) Blooms in water bodies.

These above characters are related to
(1) Archaebacteria
(2) Cyanobacteria
(3) Actinomycetes
(4) Diatoms
14. Select the correct statement from the following.
(1) Dinoflagellates are mostly marine.
(2) Euglenoids are strictly autotrophs.
(3) Amoeboid protozoans have proteinaceous pellicle.
(4) Flagellated protozoans have cavity (or) gullet.
15. What is common among Agaricus, rust and smut fungi?
(1) All are pathogens
(2) All have long gap between plasmogamy and karyogamy
(3) All have much elapsed time between karyogamy and meiosis
(4) Both 2 and 3
16. Dikaryophase not occurs in
(1) Ascomycetes
(2) Phycomycetes
(3) Basidiomycetes
(4) Both 1 and 2
17. Asexual spores of fungi are
(1) Ascospores, basidiospores and zoospores
(2) Zoospores, sporangiospores and conidia
(3) Zoospores, oospores and basidiospores
(4) Oospores, ascospores, basidiospores
18. Abnormally folded infectious proteins are
(1) Viroids
(2) Prions
(3) Virions
(4) Virusoids
19. Mycobiont in lichens can
(1) Provide shelter to phycobiont
(2) Absorb mineral nutrients
(3) Absorb water
(4) All of the above
20. Phytophages generally have
(1) ss RNA
(2) ds RNA
(3) ds DNA
(4) ss DNA
21. Which one of the following matches is correct.

1	Mucor	Reproductio n by conjugation	Ascomycetes
2	Agaricus	Parasitic fungus	Basidiomycetes
3	Phytophthora	Aseptate mycelium	Basidiomycetes
4	Alternaria	Sexual reproduction absent	Deuteromycetes
22.			
Natural consider	system of classification		
cher			

(1) External and internal features
(2) Ultrastructure and anatomy
(3) Embryology and phytochemistry
(4) All of the above
23. In phaeophyceae, the male gametes are
(1) Pyriform and bear 2 anterior flagella
(2) Pear-shaped and bear 2 lateral unequal flagella
(3) Pyriform and bear 2-8, equal apical flagella
(4) Pear-shaped and bear 2 lateral equal flagella
24. In Funaria, meiosis occurs during
(1) Gametogenesis
(2) Spore germination
(3) Sporogenesis
(4) Budding
25. Moss Protonema represents
(1) Gametophytic, Juvenile stage
(2) Sporophytic, Juvenile stage
(3) Gametophytic, Adult stage
(4) Sporophytic, Adult stage
26. Match the columns I and II, and choose the correct combination from the options given.

Column-I

Column-II

A) Selaginella
I) Psilopsida
B) Equisetum
II) Lycopsida
C) Adiantum
III) Sphenopsida
D) Psilotum
IV) Pteropsida

A \quad B $\quad \mathbf{C} \quad$ D

(1) II IV I III
(2) I IV III II
(3) II I IV III
(4) II III IV I
27. Which of the following do not belong to spermatophyta
(1) Ficus and Pinus
(2) Salvia and Sequoia
(3) Funaria and Fern
(4) Pyrus and Pisum
28. Among plant kingdom, Cycas has the
(1) Largest spermatozoids
(2) Largest egg
(3) Largest ovule
(4) All of the above
29. Cycas have 2 cotyledons but not included in dicotyledons because it has
(1) No vessels
(2) No seeds
(3) Naked seeds
(4) Flowers
30. The number of sporophylls in each flower of Brassica,Pisum,Solanum and lily respectively are
(1) $8,10,7,6$
(2) $8,11,7,9$
(3) $9,7,11,8$
(4) 2,1,2,3
31. Consider the following statements regarding gymnosperms and choose the correct option.
I) The male and female gametophytes have an independent existence.
II) The multicellular female gametophyte is retained within the megasporangium.
III) Heterosporous, spermatophytic, archegoniates.
(1) I and II
(2) I and III
(3) II only
(4) II and III
32. Select out the correct match.
(1) Spermatophytes - Diplobiontic life cycle
(2) Pteridophytes - Diplontic life cycle
(3) Bryophytes - Haplo-diplontic life cycle
(4) Red algae - Diplo-haplontic life cycle
33. Selaginella and Salvinia are considered to represent a significant step towards evolution of seed habit because
(1) Gametophytes are monoecious.
(2) Male gametes are motile.
(3) Embryo develops in female gametophyte which is retained on parent sporophyte.
(4) Male gametophyte is retained in the parental body for ever.
34. Which one of the following is wrongly matched ?
(1) Spirogyra - Motile gametes
(2) Sargassum - Chlorophyll c
(3) Porphyra - Non-motile gametes
(4) Nostoc - Heterocysts
35. Which of the following have dioecious gametophytes?
I) Marchantia
II) Selaginella
III) Cycas
IV) Salvinia
(1) I and II only
(2) II and III only
(3) III and IV only
(4) All the above
36. Pneumatophores are useful in
(1) Respiration
(2) Transpiration
(3) Guttation
(4) Protein synthesis
37. Match the columns I and II, and choose the correct combination from the options given.

Column-I Column-II

A) Colocasia

1) Flattened stem
B) Watermelon
2) Stem thorn
C) Opuntia
3) Storage stem
D) Euphorbia
4) Stem tendril
E) Bougainvillea 5) Fleshy cylindrical stem
(1) $\mathrm{A}-3, \mathrm{~B}-4, \mathrm{C}-5, \mathrm{D}-1, \mathrm{E}-2$
(2) $\mathrm{A}-3, \mathrm{~B}-2, \mathrm{C}-1, \mathrm{D}-5, \mathrm{E}-4$
(3) $\mathrm{A}-4, \mathrm{~B}-2, \mathrm{C}-5, \mathrm{D}-1, \mathrm{E}-3$
(4) $\mathrm{A}-3, \mathrm{~B}-4, \mathrm{C}-1, \mathrm{D}-5, \mathrm{E}-2$
38. Modified leaves with photosynthetic activity are found in
(1) Nepenthes
(2) Pisum sativum
(3) Cactus
(4) 1 and 2
39. Read the following statements and find out how many are incorrect statements.
a) Mustards have parietal placentation in syncarpus gynoecium.
b) China rose has superior ovary, twisted aestivation and axile placentation.
c) Pea flowers have vexillary aestivation and diadelphous stamens.
d) Chilli flowers have radial symmetry, epipetalous stamens and monocarpellary gynoecium.
e) Lily flowers are actinomorphic with axile placentation and imbricate aestivation.
(1) 3
(2) 1
(3) 4
(4) 2
40. Match the columns I and II, and choose the correct combination from the options given.

Column-I

A) Epipetalous
B) Epiphyllous
C) Monoadelphous
D) Diadelphous
E) Polyadelphous
(1) $\mathrm{A}-2, \mathrm{~B}-4, \mathrm{C}-1, \mathrm{D}-5, \mathrm{E}-3$
(2) $\mathrm{A}-5, \mathrm{~B}-3, \mathrm{C}-2, \mathrm{D}-4, \mathrm{E}-1$
(3) $\mathrm{A}-1, \mathrm{~B}-5, \mathrm{C}-2, \mathrm{D}-3, \mathrm{E}-4$
(4) $\mathrm{A}-5, \mathrm{~B}-3, \mathrm{C}-2, \mathrm{D}-1, \mathrm{E}-4$
41. Drupe fruit develops from
(1) Monocarpellary superior ovary
(2) Monocarpellary inferior ovary
(3) Monocarpellary half superior ovary
(4) Bicarpellary superior ovary
42. Recognise the figure and find out the correct matching.

(1) a - Hilum, b-Micropyle, c - Radicle, d - Plumule
(2) a - Hilum, b-Micropyle, d-Radicle, c - Plumule
(3) b-Hilum, a - Micropyle, c - Radicle, d - Plumule
(4) b - Hilum, a - Micropyle, d - Radicle, c-Plumule
43. Brinjal, Potato, Tomato, Onion, Ginger belong to
(1) A single family
(2) Four genera
(3) Five genera
(4) Same genus
44. Flower of Fabaceae is
(1) Complete, zygomorphic, pentamerous
(2) Complete, actinomorphic, tetracyclic
(3) Incomplete, zygomorphic, pentacyclic
(4) Incomplete, actinomorphic, pentamerous
50. Though the heart is auto excitable, its function can be moderated by
(1) Neural mechanism only
(2) Neural and hormonal mechanism
(3) Hormonal mechanism only
(4) By only nodal tissue (SAN and AVN)
51. Which of the following is the correct sequence in which urine flows through the kidney toward the urinary bladder?
(1) Renal pelvis, major calyx, minor calyx, duct of Bellini, ureter.
(2) Duct of Bellini, minor calyx, major calyx, renal pelvis, ureter.
(3) Minor calyx, major calyx, duct of Bellini, renal pelvis, ureter.
(4) Duct of Bellini, major calyx, minor calyx, ureter, renal pelvis.
52. What is the process called by which materials are returned to the blood from the nephric filtrate?
(1) Non-electrolyte selectivity
(2) Ultrafiltration
(3) Selective reabsorption
(4) Tubular secretion
53. The Christmas disease is another name for
(1) Hemophilia B
(2) Hepatitis B
(3) Down's syndrome
(4) Hemophilia A
54. Growth hormone
(1) is stimulated by somatostatin.
(2) Stimulates protein synthesis
(3) is released by the hypothalamus

Sri Chaitanya
(4) is secreted by neuroendocrine cells of hypothalamus
55. Arteries are best defined as the vessels which
(1) Carry blood from one visceral organ to another visceral organ
(2) Supply oxygenated blood to different organs
(3) Carry blood away from the heart to different organs
(4) Break up into capillaries which reunite to form a vein
56. How do sympathetic neural signals affect the working of the heart?
(1) Reduce both heart rate and cardiac output
(2) Heart rate is increased without affecting the cardiac output
(3) Both heart rate and cardiac output increase
(4) Heart rate decreases but cardiac output increases
57. What is a myocardial infarction?
(1) Heart failure
(2) Heart attack
(3) Cardiomegaly
(4) All of the above
58. Left ventricular end-diastolic volume is:
(1) 70 ml
(2) 50 ml
(3) 60 ml
(4) 120 ml
59. What do you mean by a functional syncytium?
(1) A parasympathetic neuron terminating at AV Node
(2) A cluster of pacemaker cells in the right atrium, present in $<20 \%$ of the population
(3) A group of cardiac myocytes that function as a single unit
(4) A rare extra blood vessel connecting the left and right coronary arteries
60. Anatomical dead space is represented by
(1) Upper respiratory tract
(2) Space between two pleural membranes
(3) Lower respiratory tract
(4) Apical parts of both the lungs
61. Both epinephrine and cortisol are secreted in response to stress. Which of the following statements is also true for both of these hormones?
(1) They act to increase blood glucose
(2) Their receptors are on the surfaces for target cells
(3) They are secreted by the adrenal cortex
(4) Their secretion is stimulated by adrenocorticotropin
62. Volume of air left after maximum forceful expiration in human lung is
(1) Total lung capacity
(2) Residual volume
(3) Vital capacity

Sri Chaitanya
(4) Tidal volume
63. The lowest $p O_{2}$ is found in
(1) Expired air
(2) Venous blood
(3) Atmospheric air
(4) Alveolar air
64. If the lung were punctured, which of the following would happen?
(1) The lung would collapse on the side of the puncture.
(2) Both the lung and the chest wall would collapse on the side of the puncture.
(3)Inspiratory signals from medulla become irregular.
(4) Interpleural pressure decrease further
65. The amygdala primarily deals with:
(1) Emotions and survival instincts
(2) Body movement
(3) Memory
(4) Day night cycles
66. When a neuron is in resting state, i.e., not conducting any impulse, the axonal membrane is
(1) Comparatively more permeable to K^{+}ions and nearly impermeable to Na^{+} ions
(2) Comparatively more permeable to Na^{+}ions and nearly impermeable to K^{+}ions
(3) Equally permeable to both Na^{+}and K^{+}ions
(4) Impermeable to both Na^{+}and K^{+}ions
67. Find out the correct statement / statements about the food pipe:
i) The oesophagus is lined by stratified squamous epithelium cell
ii) The submucosa of oesophagus contains glands for secreting digestive enzymes.
iii) The muscular coat of oesophagus consists of two layers
(1) (i), (ii) and (iii) are correct
(2) (i) and (iii) are correct
(3) (ii) and (iii) are correct
(4) If only (iii) is correct
68. The mode of action of steroid hormones involves
(1) a second messenger.
(2) modification of enzyme activity.
(3) stimulation of DNA replication.
(4) stimulation of mRNA transcription.
69. Paneth cells are found in
(1) Crypts of Lieberkuhn
(2) Peyer's patches
(3) Brunner's glands
(4) Islets of Langerhans
70. Which part of gut secretes the hormone secretin?
(1) stomach
(2) oesophagus
(3) ileum
(4) duodenum.
71. In humans caecum is
(1) a pouch connected to the junction of the small and large intestines
(2) It is separated from the ileum by the ileocecal valve
(3) Its distal end is degenerated, remnant being represented by appendix
(4) All of the above
72. Prolonged deficiency of nicotinic acid (niacin) causes
(1) pellagra
(2) xerophthalmia
(3) osteomalacia
(4) anaemia.
73. Islets of Langerhans in pancreas are responsible for
(1) Exocrine secretion
(2) Endocrine secretion
(3) Both exocrine and endocrine secretion
(4) Secreting pancreatic enzymes
74. Which statement about the structure of skeletal muscle is true?
(1) The light bands of the sarcomere are the regions where actin and myosin filaments overlap.
(2) When a muscle contracts, the I (Light Band) bands of the sarcomere remains unchanged
(3) The myosin filaments are anchored to the Z lines
(4) When a muscle contracts, the H zones of the sarcomere shorten.

Sec : SR ELITE \& SR AIIMS Super 60
75. The all-or-none response means that
(1) all of the muscles in a region contract together.
(2) all of the muscle fibers within a muscle contract together.
(3) when a muscle fiber contracts, it contracts completely.
(4) when a muscle fiber contracts, all of its ATP is changed to ADP
76. All of the following are bones of the thorax EXCEPT
(1) Lunate
(2) sternum
(3) true ribs
(4) false ribs
77. Total number of bones in left upperlimb (forelimb) of man is
(1) 60
(2) 30
(3) 26
(4) 34
78. Acetabulum forms
(1) Shoulder joint
(2) Hip joint
(3) Knee joint
(4) Elbow joint
79. One of these pairs is NOT correctly matched
(1) Myxedema - Puffiness around eyes
(2) Cretinism - Mental retardation
(3) Graves's disease - Exophthalmos
(4) Addison's disease - Truncal obesity
80. ATPase enzyme needed for muscle contraction is located in
(1) Actinin
(2) Troponin
(3) Myosin
(4) Actin
81. The neurotransmitter mostly used at the neuromuscular junction of skeletal muscles is
(1) dopamine
(2) acetylcholine
(3) noradrenaline
(4) GABA
82. Which of the following is NOT an example of a glial cell?
(1) Schwann cells
(2) Oligodendroglia
(3) Astrocytes
(4) Kupffer cells
83. Electrical impulses gather and accumulate in which part of a neuron, in order to initiate an action potential?
(1) Dendrites
(2) Axon hillock
(3) Axon terminal branches
(4) Node of Ranvier
84. The vital centers for the control of visceral activities such as heart rate, breathing, blood pressure, swallowing, and vomiting are located in the:
(1) hypothalamus
(2) medulla oblongata
(3) cerebrum
(4) midbrain
85. The main function of muscle spindles is to
(1) pass neural information evenly to all parts of the muscle.
(2)act as stretch receptors
(3) bind myofibrils together in bundles.
(4) enable contraction of the muscles.
86. Addison's disease occurs due to
(1) Hypersecretion of adrenal cortical hormones
(2) Hyposecretion of adrenal cortical hormones
(3) Hypersecretion of ACTH
(4) Hyposecretion of hormones of adrenal medulla
87. Human eye has three different types of cones which possess.
(1) Their own characteristic photopigments that respond to red, green, blue lights
(2) Only one type of photopigment, Rhodopsin
(3) Only one type of photonpigment, cyanopsin
(4) Only Rhodopsin, which can identify all the three basic colours
88. Which part of the human internal ear plays negligible role in hearing as such but is otherwise very much required for equilibrium?
(1) Vestibular apparatus
(2) Ear ossicles
(3) Eustachian tube
(4) Organ of Corti
89. Which one of the following belongs to hind-brain?
(1) Cerebellum
(2) Hypothalamus
(3) Spinal cord
(4) Corpus callosum
90. The nerve centers which control the body temperature and the urge for eating are contained in the
(1) thalami
(2) hypothalamus
(3) pons Varolii
(4) cerebellum

PHYSICS

91. If the unit of force were 10 N , that of power were 1 MW and that of time were 1 millisecond then the unit of length would be
(1) 1 m
(2) 100 m
(3) 10^{3}
(4) $10^{-2} \mathrm{~m}$
92. The position of a particle at time ' t ' is given by the equation : $x(t)=\frac{V_{0}}{A}\left(1-e^{A t}\right)$ $V_{0}=$ constant and $\mathbf{A}>0$. The dimensions of v_{0} and \mathbf{A} are respectively
(1) $M^{0} L T^{0}$ and T^{-1}
(2) $M^{0} L T^{-1}$ and $L T^{-2}$
(3) $M^{0} L T^{-1}$ and T
(4) $M^{0} L T^{-1}$ and T^{-1}

Sec : SR ELITE \& SR AIIMS Super 60
93. Two resistors of $10 K \Omega$ and $20 K \Omega$ are connected in series. If tolerance of each resistor is $\mathbf{1 0 \%}$ then tolerance of the combination will be
(1) 5%
(2) 10%
(3) 15%
(4) 20%
94. In a simple pendulum experiment, length is measured as 31.4 cm with an accuracy of 1 mm . The time for 100 oscillations of pendulum is 112 s using a watch of 1s resolution. The percentage accuracy in g is
(1) 1
(2) 1.2
(3) 1.8
(4) 2.1
95. If the unit of mass is $\alpha \mathrm{kg}$, the unit of length β metre and the unit of time is ' γ ' second, the magnitude of calorie in the new system is $(1 \mathrm{Cal}=4.2 \mathrm{~J})$
(1) $4.2 \alpha^{2} \beta^{2} \gamma^{2}$ new units
(2) $4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$ new units
(3) $\alpha^{-1} \beta^{-2} \gamma^{2}$ new units
(4) $\frac{1}{4.2} \alpha^{-1} \beta^{-2} \gamma^{2}$ new units
96. If pressure P, velocity of light C and acceleration due to gravity g are chosen as fundamental units, then dimensional formula of mass is
(1) $p c^{3} g^{-4}$
(2) $p c^{-4} g^{3}$
(3) $p c^{4} g^{-3}$
(4) $p c^{4} g^{3}$

Sri Chaitanya
97. A particle moves along a straight line such that its displacement at any time t is given by $s=\left(t^{3}-6 t^{2}+3 t+4\right)$ metres. The velocity when the acceleration is zero is
(1) $3 \mathrm{~m} / \mathrm{s}$
(2) $42 \mathrm{~m} / \mathrm{s}$
(3) $-9 \mathrm{~m} / \mathrm{s}$
(4) $-15 \mathrm{~m} / \mathrm{s}$
98. A body is projected vertically up with a velocity $50 \mathrm{~ms}^{-1}$. Distance travelled in $\mathbf{6}^{\text {th }}$ second is $\left[g=10 \mathrm{~ms}^{-2}\right]$
(1) 5 m
(2) 10 m
(3) 15 m
(4) 20 m
99. A helicopter is ascending vertically with a speed of $8.0 \mathrm{~ms}^{-1}$. At a height of 12 m above the earth, a package is dropped from its window. How much time does it taken for the package to reach the ground?
(1) 1.23 s
(2) 3.23 s
(3) 5.83 s
(4) 2.53 s
100. Wind is blowing from the south at $5 \mathrm{~ms}^{-1}$. To a cyclist it appears to be blowing from the east at $5 \mathrm{~ms}^{-1}$. The velocity of the cyclist is \qquad
(1) $5 \sqrt{2} \mathrm{~ms}^{-1}$ towards north-west
(2) $5 \sqrt{2} \mathrm{~ms}^{-1}$ towards north-east
(3) $5 \sqrt{2} \mathrm{~ms}^{-1}$ towards south-west
(4) $5 \sqrt{2} \mathrm{~ms}^{-1}$ towards south-east
101. A man can swim in still water at a speed of 6 kmph and he has to cross the river and reach just opposite point on the other bank. If the river is flowing at a speed of 3 kmph , he has to swim in the direction
(1) 30° with the river flow
(2) 60° with river flow
(3) 135° with the river flow
(4) 120° with the river flow
102. A body is projected with velocity u such that its horizontal range and maximum vertical heights are same. The maximum heights reached by it is
(1) $\frac{u^{2}}{2 g}$
(2) $\frac{3 u^{2}}{4 g}$
(3) $\frac{16 u^{2}}{17 g}$
(4) $\frac{8 u^{2}}{17 g}$
103. A body is thrown horizontally from the top of a tower. It reaches the ground after 4 s at an angle 45° to the ground. The velocity of projection is
(1) $9.8 \mathrm{~ms}^{-1}$
(2) $19.6 \mathrm{~ms}^{-1}$
(3) $29.4 \mathrm{~ms}^{-1}$
(4) $39.2 \mathrm{~ms}^{-1}$
104. A car is moving with a speed of $30 \mathrm{~ms}^{-1}$ on a circular path of radius 500 m . If its speed is increasing at the rate of $2 \mathrm{~ms}^{-1}$, the net acceleration of the car is
(1) $3.6 \mathrm{~ms}^{-2}$
(2) $2.7 \mathrm{~ms}^{-2}$
(3) $1.8 \mathrm{~ms}^{-2}$
(4) $2 \mathrm{~ms}^{-2}$
105. A ball suspended by a thread swings in a vertical plane so that its acceleration in the extreme position and lowest position are equal. The angle θ of the thread deflection in the extreme position will be
(1) $\operatorname{Tan}^{-1}(2)$
(2) $\operatorname{Tan}^{-1}(\sqrt{2})$
(3) $\operatorname{Tan}^{-1}(1 / 2)$
(4) $2 \operatorname{Tan}^{-1}(1 / 2)$
106. A particle of mass 1 kg is projected at an angle of 30° with horizontal with velocity $40 \mathrm{~ms}^{-1}$. The change in linear momentum of the particle after time $t=$ 1s will be $\left(g=10 \mathrm{~ms}^{-2}\right)$
(1) $7.5 \mathrm{~kg} \mathrm{~ms}^{-1}$
(2) $15 \mathrm{~kg} \mathrm{~ms}^{-1}$
(3) $10 \mathrm{~kg} \mathrm{~ms}^{-1}$
(4) $20 \mathrm{~kg} \mathrm{~ms}^{-1}$
107. A gun of mass M fires a bullet of mass m with a velocity v relative to the gun. The average force required to bring the gun to rest in 0.5 sec . is
(1) $\frac{2 M m v}{M+m}$
(2) $\frac{M m v}{2(M+m)}$
(3) $\frac{3 M m v}{2(M+m)}$
(4) $\frac{M m v}{(M+m)}$
108. Two 10 kg bodies are attached to a spring balance as shown in figure. The reading of the balance will be

(1) $20 \mathrm{~kg}-w t$
(2) $10 \mathrm{~kg}-w t$
(3) Zero
(4) $5 \mathrm{~kg}-w t$
109. The apparent weight of man inside a lift moving up with certain acceleration is 900 N . When the lift is coming down with the same acceleration apparent weight is found to be 300 N . The mass of the man is $\left(g=10 \mathrm{~ms}^{-2}\right)$
(1) 45 kg
(2) 60 kg
(3) 75 kg
(4) 80 kg
110. Three blocks A, B and C, of masses 4 $\mathrm{kg}, 2 \mathrm{~kg}$ and 1 kg respectively, are in contact on a frictionless surface, as shown. If a force of 14 N is applied on the 4 kg block, then the contact force between A and B is :

(1) 2 N
(2) 6 N
(3) 8 N
(4) 18 N
111. A block of weight 100 N is lying on a rough horizontal surface. If coefficient of friction is $1 / \sqrt{3}$, the least possible force that can move the block is
(1) $\frac{100}{\sqrt{3}}$
(2) $100 \sqrt{3}$
(3) $50 \sqrt{3}$
(4) 50 N
112. A block of mass 1 kg lies on a horizontal surface in the truck, the coefficient of friction between the block and the surface is 0.6 . If the acceleration of the truck is $5 \mathrm{~ms}^{-2}$ the frictional force acting on the block is
(1) 2 N
(2) 5 N
(3) 3 N
(4) 6 N
113. A block slides down a slope of angle θ with constant velocity. It is then projected up with a velocity of $10 \mathrm{~ms}^{-1}$, $g=10 \mathrm{~ms}^{-2}$ \& $\theta=30^{\circ}$. The maximum distance it can go up the plane before coming to stop is
(1) 10 m
(2) 5 m
(3) 4 m
(4) 15 m
114. Two point size bodies of same mass are knotted to a horizontal string one at the end, and the other at the mid point of it. The string is rotated in horizontal plane with the other end as centre. If T is the tension is the string between centre of circles and first body then the tension in the string between the two bodies is
(1) $\frac{T}{2}$
(2) 2 T
(3) $\frac{2 T}{3}$
(4) $\frac{3 T}{2}$
115. A particle of mass 0.1 kg is subjected to a force which varies with distance as shown in figure. If starts its journey from rest at $x=0$, then its velocity at $\mathrm{x}=\mathbf{1 2 \mathrm { m }}$ is :

(1) 0
(2) $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(3) $20 \sqrt{3} \mathrm{~m} / \mathrm{s}$
(4) $40 \mathrm{~m} / \mathrm{s}$
116. Two bodies of masses 4 kg and 16 kg are at rest. The ratio of times for which the same force must act on them to produce the same kinetic energy in both of them is
(1) $1: 4$
(2) $2: 1$
(3) $1: 2$
(4) $4: 1$
117. A motor of power $P_{\mathbf{0}}$ is used to deliver water at a certain rate through a given horizontal pipe. To increase the rate of flow of water through the same pipe n times, the power of the motor is increased to P_{1}. The ratio of P_{1} to P_{0} is : (1) $\mathrm{n}: 1$
(2) $n^{2}: 1$
(3) $n^{3}: 1$
(4) $n^{4}: 1$
118. The velocity of a body revolving in a vertical circle of radius ' r ' at the lowest point $\sqrt{7 g r}$. The ratio of maximum to minimum tensions in the string is
(1) $8: 1$
(2) $4: 1$
(3) $\sqrt{7}: 1$
(4) $1: \sqrt{7}$
119. A body of mass 6 kg travelling with a velocity $10 \mathrm{~m} / \mathrm{s}$ collides head - on and elastically with a body of mass 4 kg travelling at a speed $5 \mathrm{~m} / \mathrm{s}$ in opposite direction. The velocity of the second body after the collision is
(1) $0 \mathrm{~m} / \mathrm{s}$
(2) $6 \mathrm{~m} / \mathrm{s}$
(3) $8 \mathrm{~m} / \mathrm{s}$
(4) $13 \mathrm{~ms}^{-1}$
120. A ball impings directly upon another ball at rest and is itself brought to rest by the impact. If half of initial kinetic energy is destroyed in the collision, the coefficient of restitution is
(1) 0.3
(2) 0.4
(3) 0.5
(4) 0.6
121. A ball A moving with a certain velocity collides, with another ball B of the same mass at rest. If the coefficient of restitution is e, the ratio of the velocities of A and B just after the collision is
(1) $\frac{1+e}{1-e}$
(2) $\frac{1+e}{2}$
(3) $\frac{1-e}{2}$
(4) $\frac{1-e}{1+e}$
122. Two balls of equal masses are thrown at the same time in vacuum. While they are in vacuum, the acceleration of their centre of mass
(1) Depends on masses of the balls
(2) Depends on direction of motion of the balls
(3) Depends on speeds of the balls
(4) Is equal to acceleration due to gravity
123. A uniform metre stick is placed vertically on a horizontal frictionless surface and released. As the stick is in motion, the centre of mass moves
(1) Vertically up
(2) Vertically down
(3) In a parabolic path
(4) Horizontally
124. Six identical particles each of mass m are arranged at the corners of a regular
hexagon of side length a. If the mass of one of the particle is doubled, the shift in the centre of mass is
(1) a
(2) $\frac{6 a}{7}$
(3) $\frac{a}{7}$
(4) $\frac{a}{\sqrt{3}}$
125. The radius of gyration of body about an axis at a distance of $4 \mathbf{~ c m}$ from its centre of mass is $5 \mathbf{~ c m}$. The radius of gyration about a parallel axis through centre of mass is
(1) 2 cm
(2) 5 cm
(3) 4 cm
(4) 3 cm
126. Three identical rings, each of mass M and radius R are placed in the same plane touching each other such that their centers form the vertices of an equililateral triangle. The M.I of the system about an axis passing through center of one of the rings and perpendicular to its plane is
(1) $\frac{M R^{2}}{2}$
(2) $M R^{2}$
(3) $\frac{5}{2} M R^{2}$
(4) $11 M R^{2}$
127. A ballet dancer spins about a vertical axis at 60 rpm with his arms closed. Now he stretches his arms such that M.I increases by $\mathbf{5 0 \%}$. The new speed of revolution is
(1) 80 rpm
(2) 40 rpm
(3) 90 rpm
(4) 30 rpm
128. A constant torque of 1000 Nm turns a wheel of M.I $200 \mathrm{~kg} \mathrm{~m}^{2}$ about an axis through centre. The angular velocity after 3 s is (wheel is initially at rest)
(1) $15 \mathrm{rad} \mathrm{s}^{-1}$
(2) $22 \mathrm{rads}^{-1}$
(3) $28 \mathrm{rad} \mathrm{s}{ }^{-1}$
(4) $60 \mathrm{rad} \mathrm{s}^{-1}$
129. A point sized sphere of mass ' m ' is suspended from a point using a string of length ' l '. It is then pulled to a side till the string is horizontal and released. As the mass passes through the position where the string is vertical, magnitude of its angular momentum about point of suspension is
(1) $m l \sqrt{g l}$
(2) $m l \sqrt{2 g l}$
(3) $m l \sqrt{\frac{g l}{2}}$
(4) $m l \sqrt{3 g l}$
130. When a hollow sphere is rolling without slipping on a rough horizontal surface then the percentage of its total K.E. which is Translational is
(1) 72%
(2) 28%
(3) 60%
(4) 40%
131. P is a point at a distance r from the centre of a spherical shell of mass M and radius a, where $r<a$. The gravitational potential at \mathbf{P} is
(1) $-\frac{G M}{r}$
(2) $-\frac{G M}{a}$
(3) $-G M \frac{r}{a^{2}}$
(4) $-G M\left(\frac{a-r}{a^{2}}\right)$
132. Two satellites $A \& B$ move round the earth in the same orbit. The mass of B is twice that of A, then
(1) Speed of A \& B are equal
(2) PE of $($ earth +A$)=$ PE of $($ earth +B$)$
(3) KE of $\mathrm{A} \& \mathrm{~B}$ are equal
(4) Total energy of $($ earth $+A)=$ Total energy of (earth $+B$)
133. If an astronaut comes out of the artificial satellite, then
(1) He flies off tangentially
(2) He falls to the earth
(3) He performs SHM
(4) He continues to move along the satellite in the same orbit
134. The altitude at which the weight of a body is only 64% of its weight on the surface of the earth is (Radius of the earth is $\mathbf{6 4 0 0} \mathbf{~ k m}$)
(1) 1600 m
(2) 16 m
(3) 160 km
(4) 1600 km
135. A satellite is revolving very close to a planet of density D. The time period of revolution of that planet is
(1) $\sqrt{\frac{3 \pi}{D G}}$
(2) $\left(\frac{3 \pi}{D G}\right)^{3 / 2}$
(3) $\sqrt{\frac{3 \pi}{2 D G}}$
(4) $\sqrt{\frac{3 \pi G}{D}}$

CHEMISTRY

136. The orbital angular momentum of an electron in 2s-orbital is :
(1) $+\frac{1}{2} \cdot \frac{h}{2 \pi}$
(2) Zero
(3) $\frac{h}{2 \pi}$
(4) $\sqrt{2} \cdot \frac{h}{2 \pi}$
137. Bohr's model can explain :
(1) Spectrum of hydrogen atom only
(2) Spectrum of atom or ion having one electron only
(3) Spectrum of hydrogen molecule
(4) Solar spectrum
138. What will be the wavelength of a ball of mass 0.1 kg moving with a velocity of $10 \mathrm{~ms}^{-1}$?
(1) $6.626 \times 10^{-34} \mathrm{~m}$
(2) $6.626 \times 10^{-30} \mathrm{~m}$
(3) $3.313 \times 10^{-34} \mathrm{~m}$
(4) $3.313 \times 10^{-30} \mathrm{~m}$
139. Statement A : Emission spectrum is produced due to the transition of an electron from M shell to L shell
Statement B : The ratio of energy to frequency of a photon is 6.625×10^{-27} erg.sec.
(1) A is true and B is false
(2) A is false and B is true
(3) Both A and B are true
(4) Both A and B are false
140. The correct energy order is
(1) $E_{2 s}(H)>E_{2 s}(L i)>E_{2 s}(N a)>E_{2 s}(K)$
(2) $E_{2 s}(K)>E_{2 s}(N a)>E_{2 s}(L i)>E_{2 s}(H)$
(3) $E_{2 s}(H)>E_{2 s}(N a)>E_{2 s}(L i)>E_{2 s}(K)$
(4) $E_{2 s}(K)>E_{2 s}(L i)>E_{2 s}(N a)>E_{2 s}(H)$
141. Atomic radii of fluorine and neon in angstrom units are respectively :
(1) 1.60 and 1.60
(2) 0.72 and 1.60
(3) 0.72 and 0.72
(4) None of these
142. Which of the following transitions involves maximum energy?
(1) $M^{-}(g) \rightarrow M(g)$
(2) $M^{2+}(g) \rightarrow M^{3+}(g)$
(3) $M^{+}(g) \rightarrow M^{2+}(g)$
(4) $M(g) \rightarrow M^{+}(g)$

Sec : SR ELITE \& SR AIIMS Super 60
143. Incorrect statement among the following is:
(1) The first ionization enthalpy of Al is less than the first ionization enthalpy of Mg
(2) The second ionization enthalpy of Mg is greater than the second ionization enthalpy of Na
(3) The first ionization enthalpy of Na is less than the first ionization enthalpy of Mg.
(4) The first ionization enthalpy of Nitrogen is greater than the first ionization enthalpy of Oxygen.
144. The elements with atomic numbers 10 , $18,36,54$ and 86 are all
(1) Halogens
(2) Inert gases
(3) Alkali metals
(4) d-block elements
145. Polarisation is the distortion of the shape of an anion by the cation. Which of the following statements is correct?
(1) Maximum polarization is done by a cation of high charge
(2) A large cation is likely to bring large degree of polarization
(3) A smaller anion is likely to undergo a high degree of polarization
(4) Minimum polarisation is done by a cation of small size
146. Which atomic orbitals are involved in hybridization of central atom in square planar complex ?
(1) s, p_{x}, p_{y}, p_{z}
(2) $s, p_{x}, p_{y}, d_{z^{2}}$
(3) $s, p_{x}, p_{y}, d_{x^{2}-y^{2}}$
(4) $s, p_{x}, p_{y}, d_{x y}$
147. Which of the following statements is true about $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$?
(1) It has coordinate and covalent bonds only
(2) It has only coordinate bonds
(3) It has only electrovalent bonds
(4) It has electrovalent, covalent as well as coordinate bonds
148. The paramagnetic species among the following is
(1) $B e_{2}$
(2) B_{2}
(3) C_{2}
(4) N_{2}
149. A helium atom is two times heavier than a hydrogen molecules. At 298 K , the average kinetic energy of helium atom is
(1) Half that of hydrogen molecule
(2) Two times that of hydrogen molecule
(3) Four times that of hydrogen molecule
(4) Same as that of hydrogen molecule
150. The density of a gas is found to be $5.46 \mathrm{~g} / \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ under 2 bar pressure. Its density at STP is
(1) $4.11 \mathrm{~g} / \mathrm{dm}^{3}$
(2) $3.04 \mathrm{~g} / \mathrm{dm}^{3}$
(3) $6.83 \mathrm{~g} / \mathrm{dm}^{3}$
(4) $8.16 \mathrm{~g} / \mathrm{dm}^{3}$

151. correct relation is
(1) $T_{1}>T_{2}>T_{3}$
(2) $T_{2}>T_{3}>T_{1}$
(3) $T_{3}>T_{1}>T_{2}$
(4) $T_{3}>T_{2}>T_{1}$
152. RMS speed of SO_{2} molecule at 400 K is equal to RMS speed of CH_{4} molecule at
(1) 400 K
(2) 1600 K
(3) 100 K
(4) 200 K
153. The gas that shows +ve deviation from ideal behavior even at moderate pressure is
(1) CH_{4}
(2) NH_{3}
(3) CO
(4) H_{2}
154. A bulb of unknown volume ' V ' Contains an ideal gas at 2 atm pressure. It was connected to another evacuated bulb of volume 0.5 litre through a stopcock. When the stopcock was opened the pressure in each bulb became 0.5 atm . Then V is
(1) 17 ml
(2) 1.7 litres
(3) 0.17 litres
(4) 0.34 litres
155. One mole of $N_{2} H_{4}$ loses 10 mole of electrons to form a new compound Y. Assuming that all nitrogen appear in the new compound, what is the oxidation state of nitrogen? (There is no change in the oxidation state of hydrogen.)
(1) -1
(2) -3
(3) +3
(4) +5
156. In which of the following compounds, iron has lowest oxidation state?
(1) $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(2) $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(3) $\mathrm{Fe}_{0.94} \mathrm{O}$
(4) $\mathrm{Fe}(\mathrm{CO})_{5}$
157. 2.8 g of an element on combustion gives 5.6 grams of its oxide. The element is
(1) C
(2) N
(3) B
(4) S
158. Equivalent weight of ferrous oxalate acting like reducing agent is
(1) $\frac{M}{1}$
(2) $\frac{M}{3}$
(3) $\frac{M}{2}$
(4) $\frac{3 M}{2}$
159. The value of physical property that is higher for $\mathrm{H}_{2} \mathrm{O}$ than $\mathrm{D}_{2} \mathrm{O}$
(1) Density
(2) Temperature of maximum density
(3) Viscosity
(4) Dielectric constant
160. In ice crystals each oxygen is surrounded by ----- other oxygen atoms at a distance of 276pm
(1) 2
(2) 3
(3) 4
(4) 5
161. The reagent used in Clark's method to remove temporary hardness of water is
(1) $\mathrm{Mg}(\mathrm{OH})_{2}$
(2) $\mathrm{Ca}(\mathrm{OH})_{2}$
(3) NaOH
(4) KOH
162. The normality of $\mathbf{1 0}$ volumes of $\mathrm{H}_{2} \mathrm{O}_{2}$ is
(1) 0.89 N
(2) 1.78 N
(3) 8.9 N

Sri Chaitanya
(4) 17.8 N
163. The correct statement(s) among the following
I. Urea acts as a stabilizer for $\mathrm{H}_{2} \mathrm{O}_{2}$.
II. $\mathrm{H}_{2} \mathrm{O}_{2}$ is used in the manufacture of high quality detergents
III. $\mathrm{H}_{2} \mathrm{O}_{2}$ is non linear and non planar molecule
IV. $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidises Mn^{+2} to Mn^{+4} in basic medium
(1) I, II only
(2) I, III, IV only
(3) I, II, IV only
(4) I, II, III \& IV
164. The correct order of the oxygen, oxygen bond length in $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ and O_{3} is
(1) $\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2}$
(2) $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{O}_{2}$
(3) $\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}$
(4) $\mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}$
165. In which of the following reactions, $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reducing agent?
(1) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
(2) $2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}$
(3) $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
166. For the reaction involving the complete combustion of propane gas is
(1) $\Delta H=\Delta E$
(2) $\Delta H>\Delta E$
(3) $\Delta H=\Delta E=0$
(4) $\Delta H<\Delta E$

Sec : SR ELITE \& SR AIIMS Super 60
167. A spontaneous change is one in which the system suffers
(1) Increase in internal energy
(2) Lowering of entropy
(3) Lowering of free energy
(4) No energy change
168. The standard enthalpies of formation of $\mathrm{HCl}(g), \mathrm{H}(g)$ and $\mathrm{Cl}(g)$ are 92.2,217.7 and $121.4 \quad \mathrm{kjmol}^{-1}$ respectively. The bond dissociation energy of $\mathbf{H C l}$ is
(1) +431.3 Kj
(2) 236.9 kJ
(3) -431.3 kJ
(4) 339.1 kJ
169. The enthalpy of vaporization of a substance is $8400 \mathrm{Jmol}^{-1}$ and its boiling point is $-173^{\circ} \mathrm{C}$. The entropy change for vaporization is
(1) $84 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
(2) $21 \mathrm{Jmol}^{-1} K^{-1}$
(3) $49 \mathrm{Jmol}^{-1} K^{-1}$
(4) $12 \mathrm{Jmol}^{-1} K^{-1}$
170. During a process work equivalent to 400 J is done on a system, which gives out of 125 J of energy. The change in internal energy is
(1) 375 J
(2) 275 J
(3) 200 J
(4) 525 J
171. For the reaction $C_{(s)}+C O_{2(g)} \Leftrightarrow 2 \mathrm{CO}_{(g)}$, the partial pressures of CO_{2} and CO are 2.0 and 4.0 atm respectively at equilibrium. What is the value of Kp for this reaction?
(1) 0.5 atm .
(2) 4.0 atm .
(3) 8.0 atm .
(4) 32 atm .
172. For the reaction, $P C l_{5}(g) \rightleftharpoons$ PCl $_{3}(g)+C l_{2}(g)$, the forward reaction at constant temperature is favoured by :
I) Introducing inert gas at constant volume
II) Introducing inert gas at constant pressure
III) Decreasing pressure of the reaction mixture
IV) By adding PCl_{3} to the reaction mixture
(1) I and II
(2) II and III
(3) I and III
(4) III and IV
173. The solubility product of different sparingly soluble salts are :

1. $X Y=4 \times 10^{-20} \quad$ 2. $X_{2} Y=3.2 \times 10^{-11}$
2. $X Y_{3}=2.7 \times 10^{-31}$

The increasing order of solubility is
(1) $1,3,2$
(2) $2,1,3$
(3) $1,2,3$
(4) $3,1,2$

Sec : SR ELITE \& SR AIIMS Super 60
174. The solubility product of AgCl is $10^{-10} \mathrm{M}^{2}$. The solubility of AgCl in
0.1 M NaCl is
(1) $10^{-9} \mathrm{M}$
(2) $10^{-5} \mathrm{M}$
(3) $10^{-10} \mathrm{M}$
(4) $10^{-11} \mathrm{M}$
175. The equilibrium constant for the given reaction $N_{2(g)}+2 O_{2(g)} \rightleftharpoons 2 N O_{2(g)}$ is 100 . What is the equilibrium constant for the reaction given
$\mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+O_{2(\mathrm{~g})}$
(1) 10
(2) 1
(3) 0.1
(4) 0.01
176. $\mathrm{NH}_{4} \mathrm{COONH}_{2}(s) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$. If equilibrium pressure is 3 atm for the above reaction K_{P} will be (in $\mathbf{a t m}^{\mathbf{3}}$)
(1) 4
(2) 27
(3) $4 / 27$
(4) $1 / 27$
177. Which of the following change will shift the reaction in forward direction?
$I_{2}(g) \rightleftharpoons 2 I(g) ; \Delta H^{\circ}=+150 k J$
(1) Increase in pressure
(2) Increase in temperature
(3) Increase in concentration of I
(4) Decrease in concentration of I_{2}
178. The $\mathbf{p H}$ of a solution is 9 . Its $\left[O H^{-}\right]$is decreased 1000 times. Its $\mathbf{p H}$ will be
(1) 8
(2) 6
(3) $7-8$
(4) 12
179. Which of the following mixture is not a buffer solution
(1) 100 ml of $0.5 \mathrm{~N} \mathrm{CH} 33 \mathrm{COOH}+100 \mathrm{ml}$ of $0.5 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COONa}$
(2) 100 ml of $0.5 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}+100 \mathrm{ml}$ of $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
(3) 100 ml of $0.5 \mathrm{~N} \mathrm{NH} 44 \mathrm{OH}+10 \mathrm{ml}$ of $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
(4) 300 ml of $0.5 \mathrm{~N} \mathrm{NH} 4 \mathrm{NH}^{2}+200 \mathrm{ml}$ of $0.5 \mathrm{~N} \mathrm{HNO}_{3}$
180. Following graph shows variation of I.P. with atomic number in second period (Li - Ne). Value of I.P of $\mathrm{Na}(11)$ will be
(I. P)

(1) Above Ne
(2) Below Ne but above O
(3) Below Li
(4) Between N and O

NEET PART TEST - 1 KEY

BOTANY

1)	2	2)	3	3)	1	4)	4	5)	3	6)	4	7)	3	8)	2	9)	4	10)	3
11)	4	12)	1	13)	2	14)	1	15)	2	16)	2	17)	2	18)	2	19)	4	20)	1
21)	4	22)	4	23)	2	24)	3	25)	1	26)	4	27)	3	28)	4	29)	3	30)	2
31)	4	32)	3	33)	3	34)	1	35)	4	36)	1	37)	4	38)	4	39)	4	40)	4
41)	1	42)	1	43)	2	44)	1	45)	1										

ZOOLOGY

46$)$	2	$47)$	1	$48)$	2	$49)$	3	$50)$	2	$51)$	2	$52)$	3	$53)$	1	$54)$	2	$55)$	3
56$)$	3	$57)$	2	$58)$	4	$59)$	3	$60)$	1	$61)$	1	$62)$	2	$63)$	2	$64)$	1	$65)$	1
66$)$	1	$67)$	2	$68)$	4	$69)$	1	$70)$	4	$71)$	4	$72)$	1	$73)$	2	$74)$	4	$75)$	3
76$)$	1	$77)$	2	$78)$	2	$79)$	4	$80)$	3	$81)$	2	$82)$	4	$83)$	2	$84)$	2	$85)$	2
86$)$	2	$87)$	1	$88)$	1	$89)$	1	$90)$	2										

PHYSICS

91$)$	2	$92)$	4	$93)$	2	$94)$	4	$95)$	2	$96)$	3	$97)$	3	$98)$	1	$99)$	4	$100)$	2
101$)$	4	$102)$	4	$103)$	4	$104)$	2	$105)$	4	$106)$	3	$107)$	1	$108)$	2	$109)$	2	$110)$	2
111$)$	4	$112)$	2	$113)$	2	$114)$	3	$115)$	4	$116)$	3	$117)$	3	$118)$	2	$119)$	4	$120)$	3
121$)$	4	$122)$	4	$123)$	2	$124)$	3	$125)$	4	$126)$	4	$127)$	2	$128)$	1	$129)$	2	$130)$	3
131$)$	2	$132)$	1	$133)$	4	$134)$	4	$135)$	1										

CHEMISTRY

136)	2	137)	2	138)	1	139)	3	140)	1	141)	2	142)	2	143)	2	144)	2	145)	1
146)	3	147)	4	148)	2	149)	4	150)	2	151)	4	152)	3	153)	4	154)	3	155)	3
156)	4	157)	4	158)	2	159)	4	160)	3	161)	2	162)	2	163)	4	164)	2	165)	4
166)	4	167)	3	168)	1	169)	1	170)	2	171)	3	172)	2	173)	1	174)	1	175)	3
176)	1	177)	2	178)	2	179)	2	180)	3										

Physics Solutions:

91. $\mathrm{P}=\mathrm{F} . \mathrm{V}$
$V=\frac{P}{F}=\frac{10^{6}}{10}=10^{5} \mathrm{~ms}^{-1}$.
$V=L T^{-1}$
$L=V T=10^{5} \times 10^{-3}=100 \mathrm{~m}$
92. $A=\frac{1}{t}=T^{-1}$
$V_{0}=x A=L T^{-1}$
93. $\Delta R=\Delta R_{1}+\Delta R_{2}$

Tolence $=\frac{\Delta R}{R} \times 100$
94. $T=\frac{t}{n} \Rightarrow \frac{\Delta T}{T}=\frac{\Delta t}{t}$

$$
\begin{aligned}
& \frac{\Delta g}{g}=\frac{\Delta l}{l}+2\left(\frac{\Delta T}{T}\right) \\
& \Rightarrow \frac{\Delta g}{g}=\frac{\Delta l}{l}+2\left(\frac{\Delta t}{t}\right)
\end{aligned}
$$

95. $\quad n_{1}$ old units $=n_{2}$ new units.
96. $M=p^{x} c^{y} g^{z}$
97. $V=\frac{d s}{d t}$
$a=\frac{d v}{d t}$
98. $s=\frac{1}{2} g t^{2}$

Where $\mathrm{t}=1 \mathrm{~s}$
99. $H=-u t+\frac{1}{2} g t^{2}$
100. $V_{W}=5 J$
$V_{W C}=-5 J$
$V_{W C}=V_{W}-V_{C}$
101. $\sin \theta=\frac{V_{r}}{V_{m r}}=\frac{1}{2}$
$\theta=30^{\circ}$
Hence 120° with river flow
102. $H=\frac{R}{4} \operatorname{Tan} \theta$
103. $\operatorname{Tan} 45=\frac{V_{y}}{V_{x}}$
$\Rightarrow V_{y}=V_{x}$
$\therefore V_{x}=g t$
104. $a=\sqrt{a_{c}^{2}+a_{t}^{2}}$
105. If θ is the deflection then $g \sin \theta=\frac{v^{2}}{l}$

Where $v^{2}=2 g l(1-\cos \theta)$
106. $\Delta P=F \times t$
$=m g \times t$
107. $O=P_{b}+P_{g}$

Let $V_{g}=x$
$V_{b g}=V$
$V_{b}-V_{g}=V$
$V_{b}=x+v$
$\therefore V_{g}=\frac{-m u}{M+m}$
$F=\frac{\Delta P}{\Delta t}$
108. Acceleration $\mathrm{a}=0$

$$
\therefore T=m g
$$

109. $900=m(g+a)$
$300=m(g-a)$
110. $a_{s}=\frac{14}{4+2+1}=2 \mathrm{~ms}^{-2}$

$$
F_{A B}=(2+1) a_{s}=6 \mathrm{~N}
$$

111. $F_{\text {min }}=m g \sin \theta$

Where $\operatorname{Tan} \theta=\mu_{s}=\frac{1}{\sqrt{3}}$
112. $m a<f_{m s}$
$\Rightarrow f_{s}=m a$
113. $\mu_{k}=\operatorname{Tan} \theta=\frac{1}{\sqrt{3}}$
$-m g\left(\sin \theta+\mu_{k} \cos \theta\right) s=\theta-\frac{1}{2} m V^{2}$
114. $T_{1}-T_{2}=m l W^{2}$
$T_{2}=m \cdot 2 l \cdot W^{2}$
115. Area $=\frac{1}{2} m\left(v^{2}-u^{2}\right)$
116. $F . t=m(v-u)$

$$
F . s=\frac{1}{2} m\left(v^{2}-u^{2}\right)
$$

117. $P=A d v^{3}$
118. $T_{\text {max }}=8 m g$

$$
T_{\max }-T_{\min }=6 m g
$$

119. $v_{2}-u_{1}\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right)+u_{2}\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right)$
120. $m_{1}=e m_{2}$
$\Delta U=\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(1-e^{2}\right) u^{2}$
121. $v_{1}=u_{1}\left(\frac{m_{1}-e m_{2}}{m_{1}+m_{2}}\right)$

$$
v_{2}=u_{1}\left(\frac{(1+e) m_{1}}{m_{1}+m_{2}}\right)
$$

122. $\overline{a_{c}}=\frac{\sum m \bar{a}}{\sum m}$
123. The only force acting is gravity. Hence centre of mass moves vertically down.
124. $6 m \cdot x=m(a-x)$
125. $K^{2}=K_{c}^{2}+r^{2}$
126. $I=m r^{2}+\left[m r^{2}+m \cdot(2 r)^{2}\right] 2$
127. $I \times 60=\left(I+\frac{I}{2}\right) \times \omega$
$128 \tau=I \propto$

$$
\omega=\omega_{0}+\propto t
$$

129. $m g l=\frac{1}{2} m v^{2}$
$L=m v l$
130. $\sum E=\frac{1}{2} m v^{2}\left[1+\frac{K^{2}}{r^{2}}\right]$
131. $\forall r \leq a$, the potential is equal to that on surface
132. $V_{0}=\sqrt{\frac{G M}{r}}$
133. Inertia of motion and direction.
134. $g^{1}=\frac{G M}{(R+h)^{2}}$
135. $T=2 \pi \sqrt{\frac{R}{g}}$

Where $g=\frac{4}{3} \pi G D R$.

