SYLLABUS

SR ELITE SRICHAITANYA 23.03.2020

LNTT	DATE	DAY	botany	20000GY	Phirsics	Try
1	19.03:2020 to $23-3.20$	$\begin{aligned} & \text { Thu to } \\ & \text { Mon } \end{aligned}$	Bibtechnology prindiples and processes, Bitatatnology and its applications, tcosptem-Plant communtites, Suctession in plants, Nutrient (qdes, Ecosytem sevicess Strategis for enhancementi h food prodution,Molecular basts of ihheritance, Principles of inhertiance and varidition	Orgarisms and Populations (exchulling soli), Cospstem lexcuding Ecropgici) succession, Nutrient rycing, Erosystem sesices, Blodivesisy and Conservation, Envirinnmental Isues, Animal Hysbindry, Blotechnological Applications la Medicine, Transente Animals	Motion in a stright line, Motion in a plane lows of motion, (lfccuding fildion), Woxk, Power, Energy (Including tollisions), Centre of (nass Thermometry, Exp, of sollds, liquits and measurements, Vernier clipests \& Scewew fuage	Atomic structure , Stochichamety, Sttetes of matter, Thermodynarric, ,b-blox: including KMnO4 and K2Cr207ik : iticselements \& Complex compountsis ind Opanic chembitry: Complette sis year syilabus \& Environmental chervistry
趴	24.032020	Inves		NEETUT	PM 505 PM	

IMPORTANT INSTRUCTIONS :

Pattern of the Entrance Examination:-

Paper containing 180 objective type questions, from Biology, Physics and Chemistry

* Use Blue/Black Ball Point Pen only to darken the appropriate circle. Answers marked with pencil would not be evaluated.
* Each item carries 4marks. For each correct response the candidate will get 4 marks. For each incorrect response 1mark will be deducted from the total score

1. Biotechnology is the integration of natural science and
(1) Organism
(2) Cell
(3) Parts of cells
(4) All the above
2. Which of the following core technique enabled birth of modern biotechnology
(1) Genetic engineering
(2) Maintenance of sterile ambience in
chemical engineering processes
(3) Bioinformatics
(4) Both $1 \& 2$
3. Which of the following processes or techniques are included under biotechnology
(1) invitro fertilization leading to a test tube baby
(2) synthesising a gene and using it
(3) developing DNA vaccine
(4) all the above
4. Which of the following is the operational technique in biotechnological process where one or more nutrients are supplied in incremental manner
(1) Batch culture
(2) Continuous culture
(3) Fed batch culture
(4) Both 2 and 3
5. Which of the following is currently the most popular vector for cloning large pieces of DNA
(1) BAC
(2) YAC
(3) PAC
(4) Fosmids
6. Which of the following is absent in $\mathrm{P}^{\mathrm{BR} 322}$
(1) Bam HI
(2) Hind III
(3) 'Cos' site
(4) rop
7. In PCR what is the correct sequence of events
(1) Extension \rightarrow Annealing \rightarrow Denaturation
(2) Denaturation \rightarrow Polymerisation \rightarrow Annealing
(3) Denaturation \rightarrow Annealing \rightarrow proof reading
(4) Denaturation \rightarrow Annealing \rightarrow Extension
8. Which of the following is not considered as critical research areas of biotechnology
(1) providing best catalyst in form of improved organism
(2) creating optimum conditions for catalyst
(3) creating suitable host
(4) downstreaming processes
9. Cry IAc and cry IIAb control the
(1) Cotton borers
(2) Cotton stem borers
(3) Cotton bollworms
(4) all types of cotton insects
10. Which of the following is/are the drawback of GMP
(1) unintended harm to other organisms
(2) gene transfer in non target organism
(3) Allergies
(4) all the above
11. In F2 of mendelian dihybrid cross, how many plants are double homozygous
(1) $1 / 16$
(2) $2 / 16$
(3) $4 / 16$
(4) $8 / 16$
12. In plant breeding programmes, selected hybrid progeny is immediately followed by
(1) Testing / evaluation
(2) Selfing
(3) Hardening
(4) Commercialisation
13. During green revolution, which of the following rice varieties were introduced in India
(1) Jaya \& Ratna
(2) IR - $8 \& \mathrm{TN}-1$
(3) IR - 8 \& Padama
(4) Reimei \& Aromatica
14. Resistance to yellow mosaic virus in Parbhani Kranti variety was developed by
(1) mutation breeding
(2) cross hybridisation with wild relatives
(3) Genetic engineering
(4) Somaclonal variations
15. Which of the following wheat variety is associated with high protein content
(1) Himgiri
(2) Sonalika
(3) Atlas - 66
(4) Kalyam sona
16. In nucleic acid, the bases in two strands are paired through
(1) Phosphodiester bond
(2) Phosphoester bond
(3) Hydrogen bonds
(4) Glycosidic bond
17. The unequivocal proof that DNA is a genetic material came from the experiments of
(1) Griffith
(2) Avery, Macleod \& Mc Carti
(3) Hershey \& Chase
(4) Watson \& Crick
18. Inheritance of character affected by
(1) Structural gene
(2) Promoter
(3) Regulatory sequences of structural gene
(4) All the above
19. Which of the following play structural and catalytic role during translation
(1) r - RNA
(2) m - RNA
(3) t - RNA
(4) Sc - RNA
20. Which of the following is not an event of gene expression
(1) Replication of DNA
(2) Transcription
(3) Processing of hnRNA
(4) Translation
21. Which of the following genetic code has dual functions in Eukaryotic code
(1) GUG
(2) AUG
(3) UAA
(4) UAG
22. UTRs are present at
(1) 5^{\prime} end
(2) 3^{\prime} end
(3) both 5^{\prime} end and 3^{\prime} end
(4) either on 5^{\prime} and or 3^{\prime} end
23. In lac operon β-galactosidase
synthesised by
(1) i - gene
(2) z - gene
(3) y - gene
(4) a - gene
24. Which enzyme is responsible for SnRNA formation?
(1) RNA polymerase I
(2) RNA polymerase II
(3) RNA polymerase III
(4) DNA ligase
25. 'Sonalika' is the improved variety of a crop namely
(1) Maize
(2) Pea
(3) Rice
(4) Wheat
26. Wheat variety resistant to leaf and stripe rust is
(1) Sonalika
(2) Himgiri
(3) HUW 468
(4) Sonora 64
27. Match the right option

	Column-I		Column-II
A.	Dee geo - Woo - gen	i.	Rice
B.	Sharbati Sonora	ii.	Mutation
C.	Cow pea	iii.	Pusa komal
D.	Chilli	iv.	Pusa Sadabahar

(1) A - i, B - ii, C - iii, D - iv
(2) $\mathrm{A}-\mathrm{ii}, \mathrm{B}-\mathrm{iii}, \mathrm{C}-\mathrm{i}, \mathrm{D}-\mathrm{iv}$
(3) A - iii, B - ii, C - i, D - iv
(4) $\mathrm{A}-\mathrm{iv}, \mathrm{B}-\mathrm{i}, \mathrm{C}-\mathrm{ii}, \mathrm{D}-\mathrm{iii}$
28. In successive seral stages there is change in the
(1) diversity of species
(2) number of species
(3) total biomass
(4) all the above
29. DNA of a bacterium is not cleaved by its own restriction enzymes because the recognition DNA sequences are
(1) Methylated
(2) Deleted
(3) Bound by inhibitory proteins
(4) All of the above
30. In an experiment individual homozygous for ab genes were crossed with wild type (++). The F_{1} hybrid thus produced was test crossed and progenies produced in following ratio ++540 , ab 360, $+\mathrm{a} 40,+\mathrm{b}$ 60. Calculate the distance between b and a genes
(1) $10 \mathrm{~m} . \mathrm{u}$.
(2) $20 \mathrm{~m} . \mathrm{u}$.
(3) 44 m.u.
(4) $45 \mathrm{~m} . \mathrm{u}$.
31. A heterozygous round seeded non pleotrophic pea plant is crossed with wrinkled seeded pea plant. How many plants produce large sized starch grain out of 2000 progenies obtained?
(1) 1000
(2) 0
(3) 1500
(4) 750
32. Identify the restruction enzyme used to cut the site ' X ', ' Y ' respectively.

(1) Pvu I, Pst I
(2) Bam H I, Sal I
(3) Pvu II, Pst I
(4) Sal I, Bam H I
33. 'Central dogma' of molecular biology was proposed by
(1) Watson
(2) F. Crick
(3) Hershey and Chase
(4) Nirenberg
34. Find out the correct statements from the followings List
a) In lac - operon structural gene is regulated by a common promoter and regulatory gene
b) In lac - operon one regulatory gene (the i gene) is present, here the term i refers to the inducer
c) Lactose is the substrate for the enzyme beta galactosidase and it regulates switching on and off of the operon
d) The y - gene codes for beta galactosidase.
e) The z - gene of lac - operon codes for transacetylase.
(1) a and c
(2) a, b and e
(3) a. c and e
(4) a, c, d and e
35. Presence of sampling ports in a bioreactor is meant for
(1) Facilitating even maxing of culture
(2) Enhancing oxygen availability throughout bioreactor
(3) Collection of raw material used in preparation of culture
(4) Withdrawing small volume of culture periodically
36. Label the stages $\mathrm{B}, \mathrm{C}, \mathrm{A}$ respectively

(1) Anaphase I, Anaphase II, Germ cells
(2) Anaphase II, Anaphase I, Germ cells
(3) Anaphase II, Germ cells, Anaphase I
(4) Anaphase I, Germ cells, Anaphase II
37. Which is not true about PCR (Polymerase Chain Reaction)?
(1) PCR can amplify very small amount of DNA
(2) It can be used to detect HIV in suspects
(3) Only RNA can be used as primer
(4) It is in-vitro amplification of DNA
38. Which of the following is/ are true?
I. Biowar is the use of biological weapons against human and /or their crops and animals.
II. Biopiracy is the unauthorised use of bioresources and traditional knowledge related to bioresources for commercial benefits
III. Biopatent is exploitation of bioresources of other nations without proper authorization.
(1) II and III
(2) I and III
(3) I and II
(4) I, II and III
39. Chemical method, that was instrumental in synthesising RNA molecules with defined combinations of bases was developed by
(1) Marshal Nirenberg
(2) H.G. Khorana
(3) Severo Ochoa
(4) Crick
40. In which of the following aspect phosphorus cycle is different from carbon cycle
(1) respiratory release
(2) atmospheric input
(3) types of biogeochemical cycle
(4) all the above
41. Which of the following vector is used extensively for genetic engineering in animals?
(1) E. coli
(2) Ti plasmid
(3) Bacillus thuringiensis
(4) Retrovirus (disarmed)
42. Which of the following bacterial RNA act as ribozyme?
(1) 16S r-RNA
(2) 5 S r - RNA
(3) 23 S r - RNA
(4) 18 S r - RNA
43. Select incorrect statement
(1) Modified alleles can produce dominant trait
(2) $3: 1$ ratio in F_{2} explain purity of gametes
(3) Recessive trait is generally seen due to modified gene
(4) Unmodified allele produces non functional enzyme
44. Choose the incorrect match.
(1) Ori - Responsible for controlling the copy number of linked DNA.
(2) Rop - Codes for the protein involved in replication of plasmid.
(3) Hind III - Restriction site on pBR322
(4) Normal E.coli - resistance for ampicillin and tetracyclin.
45. Post transcription processing is required for synthesis of functional
(1) r - RNA
(2) m - RNA
(3) t - RNA
(4) all the above
46. To attract the bees for pollination the flowers of plants show the following adaptations
(1) Bright colouration of petals
(2) Emission of electric currents
(3) Alluring fragrance
(4) All of these
47. A migratory fish is ' X ' with respect to tolerance to temperature and ' Y ' with respect to tolerance to salinity.
' X ' and ' Y ' are
(1) X-Eury thermal; Y-Stenohaline
(2) X-Eurythermal; Y-Euryhaline
(3) X-Stenothermal; Y-Euryhaline
(4) X-Stenothermal; Y-Stenohaline
48. In different population interactions when cattle interacts with ' A ', ' B ' and ' C ' respectively, the cattle likely to be 'Beneficiary', 'Neutral' and 'Detrimental' in
(1) A-Cellulolytic bacteria; B-Cattle egret; C-Ticks
(2) A-Cattle egret; B-Cellulolytic bacteria; C-Ticks
(3) A-Sterpotococcus bacteria; B-Cattle egret; C-Ticks
(4) A-Streptococcus bacteria; B-Cattle egret; C-Cellulolytic bacteria
49. In animals, all are mostly influenced by photoperiod except
(1) Respiration
(2) Breeding
(3) Migration
(4) Reproduction
50. Shorter ears and limbs in mammals of colder region mainly help in
(1) Minimizing heat production
(2) Minimizing heat loss
(3) Maximizing the light absorbency
(4) Minimizing the light absorbency
51. Read the following
(a) Geometric growth pattern results in Jshaped curves
(b) Exponential growth model is considered a more realistic curve
(c) Any species growing exponentially under unlimited resource conditions can reach enormous population densities in a short time
(d) The exponential growth equation is

$$
\frac{d N}{d t}=r N\left(\frac{K-N}{K}\right)
$$

In the above, the set of correct statements with respect to exponential growth curve is
(1) (a) and (b)
(2) (a) and (c)
(3) (b) and (d)
(4) (b) and (c)
52. Pacific salmon breeds ---- in its life time
(1) Once
(2) Twice
(3) Three times
(4) Many times
53. The mechanism that promotes coexistence rather than competitive exclusion can be explained in
(1) Balanus and Chthamalus
(2) Goat and Abingdon tortoise
(3) Yellow-rumped and Blackburnian warblers
(4) Visiting flamingos and Resident fishes
54. Though both predation and parasitism are ' + ' and '-' relationships, the predators differ from parasites by showing
(1) Multicellular nature
(2) Free living mode of life
(3) Aerobic respiration
(4) Decrease in their size than to preys
55. Match the column-I with column-II and select the correct option using the codes given below pertaining to pond ecosystem

Column-I	Column-II
A. Marginal plant	I. Azolla
B. Submerged plant	II. Batrachospermum
C. Floating plant	III. Vallisneria
D. Phytoplankton	IV. Sagittaria

(1) A-IV, B-III, C-II, D-I
(2) A-III, B-IV, C-II, D-I
(3) A-IV, B-III, C-I, D-II
(4) A-IV, B-II, C-III, D-I
56. Detrivorous annelids are
(1) Bristle worms
(2) Millipedes
(3) Earthworms
(4) Leeches
57. PP, PC, SC and TC are the codes of different trophic levels from bottom to top in a pyramid of numbers. Identify the correct with respect to the above codes
(1) $\mathrm{PC}=\mathrm{SC}$ in parasitic pyramid
(2) TC $>$ PP in seawater pyramid
(3) PP $>$ PC in lake pyramid
(4) PC < SC in grassland pyramid
58. The following factor(s) is/are reason(s) for limited productivity in oceanic ecosystems
(1) The amount of light reaching the ocean surface decreases with the increasing depth of the ocean
(2) Deficiency of nitrogen in oceans, an important mineral in the growth of plants.
(3) Both 1 and 2
(4) Availability of more carbon in water
59. Read the following with respect to pyramid of biomass
(a) In terrestrial ecosystems, it is inverted
(b) In aquatic ecosystems, always upright

Select the correct answer from the following codes
(1) (a) and (b) are true
(2) (a) is true but (b) is false
(3) (a) and (b) are false
(4) (a) is false but (b) is true
60. By the following process the water soluble inorganic nutrients go down into the soil horizon and get precipitated as unavailable salts
(1) Fragmentation
(2) Leaching
(3) Catabolism
(4) Mineralization
61. Identify the incorrect statement from the following with respect to an ecosystem
(1) DFCs are major conduit of energy flow in an aquatic ecosystem
(2) Flow of energy is always unidirectional
(3) Nutrients are cyclic between living beings and environment
(4) It is self sustainable unit
62. Assuming that the energy transfer efficiency between trophic levels is 10%, how much 'productivity' of plants is required to produce 100 kg of tiger biomass if the plants are eaten by deer and deer in turn are eaten by tiger?
(1) 100 kg
(2) 1000 kg
(3) $10,000 \mathrm{~kg}$
(4) $1,00,000 \mathrm{~kg}$
63. Cockroach and crow are similar
(1) In showing homology w.r.t to wings
(2) In having homeothermy
(3) In possessing omnivorous nature
(4) In lacking light weight for flight
64. For the preservation of biological diversity in India, the Biological Diversity Act was introduced by the Parliament in the year
(1) 2002
(2) 1992
(3) 2012
(4) 1974
65. Read the following statements
(A) Biodiversity conservation is a collective responsibility of all nations.
(B) Biodiversity knows no political boundaries.
(1) A is only correct
(2) Both A and B are correct
(3) B is only correct
(4) Both A and B are incorrect
66. We have a moral duty to care for their well-being and pass on our biological legacy in good order to future generations - This argument comes under
(1) Ethical
(2) Broadly Utilitarian
(3) Narrowly Utilitarian
(4) Both 2 and 3
67. According to IUCN Red List (200(4) documents the extinction of 784 species in the last 500 years. In them which were in maximum in their number of extinction?
(1) Plants
(2) Vertebrates
(3) Invertebrates
(4) All are equal in their numbers
68. All of the following are extinct pairs of mammals except
(1) Quagga and Thylacine
(2) Steller's sea cow and Bali tiger
(3) Javan and Caspian tigers
(4) Columbian grebe and Dodo
69. Which of the following is not an 'Evil Quartet'?
(1) Habitat loss
(2) Co-evolution
(3) Alien species invasion
(4) Over-exploitation
70. In which of this approach, the threatened animals and plants are taken out from their natural habitat and placed in special setting where they can be protected and given special care?
(1) In situ conservation: National Parks
(2) Ex situ conservation: Sanctuaries
(3) Offsite conservation: Zoological parks
(4) Onsite conservation: Botanical gardens
71. Endemic species are
(1) Species under threatened state in a many regions
(2) Species confined to a specific region not found anywhere else
(3) Species protected only in ex situ conservation
(4) Species that declared by IUCN as critically endangered
72. Species area relationship was explained by
(1) Alexander Fleming
(2) Tillman
(3) Weismann
(4) Alexander von Humboldt
73. Consider the following statements regarding the suggested measures to minimize global warming by reducing emission of greenhouse gases especially CO_{2}
i. Increased fuel efficiency in power plants
ii. Implementation of non-fossil fuel alternatives
iii. Halting deforestation

Which of the above statements are correct?
(1) i only
(2) i and ii
(3) ii and iii
(4) i, ii and iii
74. Which one of the following pairs is mismatched?
(1) Nuclear power plants - Radioactive wastes
(2) Solar energy - Greenhouse effect
(3) Thermal power plants - SO_{2} pollution
(4) Domestic sewage - Decreased BOD
75. Release of CO by automobiles prevent transport oxygen in the body tissues by
(1) Forming a stable compound with Hb
(2) Increasing affinity between of $\mathrm{O}_{2} \&$ Hb
(3) By changing O_{2} into CO_{2}
(4) By destroying Hb
76. Match the following and choose the correct

List-I	List-II
A. Biomagnification	I. Natural aging of lake
B. Eutrophication	II. DDT pollution
C. Ozone depletion	III. DNA damage
D. El Nino effect	IV. Odd climatic change
E. Jhum cultivation	V. Deforestation

(1) A-I, B-II, C-III, D-IV, E-V
(2) A-III, B-IV, C-I, D-II, E-V
(3) A-III, B-II, C-IV, D-I, E-V
(4) A-II, B-I, C-III, D-IV, E-V
77. Hot waste water discharged from industries into water bodies
(1) Increase nutrients in water body
(2) Is regarded as a water pollutant
(3) Increases DO of water
(4) Decreases BOD of water
78. The following pollutant in a water body that accumulated by a primary consumer cannot be metabolized or excreted
(1) Creatinine
(2) Mercury
(3) Sewage
(4) CO_{2}
79. Snow blindness is due to the inflammation of
(1) Lens
(2) Iris
(3) Retina
(4) Cornea
80. Ramesh Chandra Dagar, a farmer of Sonipat has created the Haryana Kisan welfare club, it is related to
(1) Integrated organic farming
(2) Uses of fertilizer
(3) Limited use of pesticides
(4) Case study of remedy for plastic waste
81. Montreal Protocol was signed at Montreal, Canada to control the emission of
(1) Greenhouse gases
(2) Ozone depletion substances
(3) Hospital wastes
(4) Automobiles
82. A transgenic animal will surely have 'foreign DNA' in its all cells if the 'foreign DNA' is
(1) Introduced into gametes
(2) Introduced into zygote
(3) Introduced into trophoblast of morula
(4) Introduced into inner cell mass of
blastocyst
83. Mule
(1) Is a cross breed
(2) Is a cloned animal
(3) Has considerable economic value
(4) More reproductive efficiency than to its parents
84. Identify the mismatched combination from the following

A	B (Lack of)
(1) Mature insulin	C peptide
(2) SCID	ADA
(3) Emphysema	a-antitrypsin
(4) Rosie	a-lactalbumin

85. Which of the following is true regarding Hisardale?
(1) Bikaneri-Male parent; Marino-Female parent
(2) Stallion-Male parent; Mare-Female parent
(3) Bikaneri-Female parent; Marino-Male parent
(4) Stallion-Female parent; Mare-Male parent
86. Which of the following sets of Mendelian disorders is attempted to treat by using transgenic animals?
(1) Cystic fibrosis; Phenylketonuria
(2) Daltonism; Turner syndrome
(3) Albinism; Myasthenia gravis
(4) Alkaptanuria; Haematuria
87. The technique(s) that serve the purpose of early diagnosis of diseases is/are
(1) rDNA technology
(2) Polymerase Chain Reaction
(3) Enzyme Linked Immuno-sorbent Assay
(4) All of these
88. Read the following sets of fishes

Set A: Mackerel; Pomfret
Set B: Hilsa; Sardine
Set C: Catfish; Katla

Set D: Rohu; Common carp
Sekhar and Ravi have thrown fish gear into 'sea water' and 'freshwater' respectively. Which of the following is likely true with respect to catching the fishes?
(1) Sekhar: Sets A \& C; Ravi: Sets B \& D
(2) Sekhar: Sets A \& B; Ravi: Sets C \& D
(3) Sekhar: Sets C \& D; Ravi: Sets A \& B
(4) Sekhar: Sets B \& D; Ravi: Sets A \& C
89. Read the following
(a) ELISA
(b) Eli Lily

Identify the correct related to (a) and (b)
(1) (a) is discovered by (b)
(2) (a) is conducted for the first time by(b)
(3) (a) is a screening test of AIDS; (b) is a company developed humulin
(4) (a) is not used in pregnancy test; (b) company extracted insulin from pig
90. The "nectar collecting bees" in beehive are
(1) Fertile females
(2) Haploid males
(3) Polyploid females
(4) Diploid females
91. The speed of a body moving with uniform acceleration is u. This speed is doubled while covering a distance S. When it covers an additional distance S, its speed would become
(1) $\sqrt{3} u$
(2) $\sqrt{5} u$
(3) $\sqrt{11} u$
(4) $\sqrt{7} u$
92. A balloon rises from rest with a constant acceleration $\mathrm{g} / 8$. A stone is released from
it when it has risen to height h. The time taken by the stone to reach the ground is
(1) $4 \sqrt{\frac{h}{g}}$
(2) $2 \sqrt{\frac{h}{g}}$
(3) $\sqrt{\frac{2 h}{g}}$
(4) $\sqrt{\frac{g}{h}}$
93. A body is fired vertically upwards with an initial velocity u. After an interval of T seconds, a second body is fired vertically upwards, also with initial velocity u. They meet at time t after the first body is projected then $\mathrm{t}=$
(1) $\frac{u}{g}$
(2) $\frac{u}{g}+\frac{T}{2}$
(3) $\frac{u}{g}-\frac{T}{2}$
(4) They never meet
94. An object moving with a speed of 6.25 m / s, is decelerated at a rate given by $\frac{\mathbf{d v}}{\mathbf{d t}}=\mathbf{- 2 . 5} \sqrt{\mathbf{v}}$; where v is instantaneous speed. The time taken by the object, to come to rest, would be
(1) 1 s
(2) 2 s
(3) 4 s
(4) 8 s
95. A particle starts from rest. Its acceleration (a) versus time (t) is as shown in the figure. The maximum speed of the particle will be

(1) $110 \mathrm{~m} / \mathrm{s}$
(2) $55 \mathrm{~m} / \mathrm{s}$
(3) $550 \mathrm{~m} / \mathrm{s}$
(4) $660 \mathrm{~m} / \mathrm{s}$
96. A stationary man observes that the rain is falling vertically downward. When he starts running with a velocity of $12 \mathrm{~km} / \mathrm{h}$, he observes that the rains is falling at an angle 60° with the vertical. The actual velocity of rain is
(1) $12 \sqrt{3} \mathrm{~km} / \mathrm{h}$
(2) $6 \sqrt{3} \mathrm{~km} / \mathrm{h}$
(3) $4 \sqrt{3} \mathrm{~km} / \mathrm{h}$
(4) $2 \sqrt{3} \mathrm{~km} / \mathrm{h}$
97. The maximum horizontal range of a projectile is 400 m . The maximum height attained by that projectile will be
(1) 200 m
(2) 100 m
(3) 400 m
(4) 800 m
98. A ball is rolled off the edge of a horizontal table at a speed of 4 $\mathrm{m} /$ second. It hits the ground after 0.4 second. Which statement given below is true
a) It hits the ground at a horizontal distance 1.6 m from the edge of the table
b) The speed with which it hits the ground is $4.0 \mathrm{~m} /$ second
c) Height of the table is 0.8 m
d) It hits the ground at an angle of 60° to the horizontal
(1) a and b are true
(2) b and c are true
(3) a and c are true
(4) all are true
99. A man can swim in still water at a speed of 6 kmph and he has to cross the river and reach just opposite point on the other bank. If the river is flowing at a speed of 3 kmph , and the width of the river is 2 km , the time taken to cross the river is (in hours)
(1) $\frac{2}{27}$
(2) $\frac{2}{\sqrt{27}}$
(3) $\frac{2}{3}$
(4) $\frac{2}{\sqrt{45}}$
100. A pendulum of length 1 m is released from $\boldsymbol{\theta}_{\mathbf{0}}=\mathbf{6 0}^{\circ}$. The rate of change of speed of the bob at $\boldsymbol{\theta}=\mathbf{3 0}^{\circ}$ is $(\mathrm{g}=10$ $\mathrm{m} / \mathrm{s}^{2}$)

(1) $5 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}$
(2) $5 \mathrm{~m} / \mathrm{s}^{2}$
(3) $10 \mathrm{~m} / \mathrm{s}^{2}$
(4) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
101. A coin is dropped in a lift. It takes time $\mathbf{t}_{\mathbf{1}}$ to reach the floor when lift is stationary. It takes time $\mathbf{t}_{\mathbf{2}}$ when the same lift is moving up with constant acceleration. Then
(1) $t_{1}>t_{2}$
(2) $t_{2}>t_{1}$
(3) $t_{1}=t_{2}$
(4) we cannot say
102. A satellite in force-free space sweeps stationary interplanetary dust at a rate
$\mathbf{d M} / \mathbf{d t}=\boldsymbol{\alpha v}$ where M is the mass, v is the velocity of the satellite and $\boldsymbol{\alpha}$ is a constant. What is the deacceleration of the satellite
(1) $-2 \alpha v^{2} / M$
(2) $-\alpha v^{2} / M$
(3) $+\alpha v^{2} / M$
(4) $-\alpha v^{2}$
103. A bullet is fired from a gun. The force on the bullet is given by $F=600-\left(2 \times 10^{5}\right) t$, where F is in newtons and t in seconds. The force on the bullet becomes zero as soon as it leaves the barrel. What is the average impulse imparted to the bullet
(1) 9 Ns
(2) zero
(3) 0.9 Ns
(4) 1.8 Ns
104. A block is kept on a frictionless inclined surface with angle of inclination ' α '. The incline is given an acceleration 'a' to keep the block stationary oin the incline. Then ' a ' is equal to

(1) g
(2) $g \tan \alpha$
(3) g/tan α
(4) $g \operatorname{cosec} \alpha$
105. The force-time $(\mathrm{F}-\mathrm{t})$ curve of a particle executing linear motion is as shown in the figure. The momentum acquired by the particle in time interval from zero to 8 second will be

(1) $-2 \mathrm{~N}-\mathrm{s}$
(2) $+4 \mathrm{~N}-\mathrm{s}$
(3) $6 \mathrm{~N}-\mathrm{s}$
(4) Zero
106. Two unequal masses are connected on two sides of light string passing over a light and smooth pulley as shown. The system is released from rest. The larger mass is stopped for a moment, 1.0 sec after the system is in motion. The time elapsed before the string is tight again is (in sec)

(1) $1 / 4$
(2) $1 / 2$
(3) $2 / 3$
(4) $1 / 3$
107. A block of mass 0.1 kg is held against a wall by applying a horizontal force of 5 N on the block. If the coefficient of friction between the block and the wall is 0.5 , the magnitude of the frictional force acting on the block is
(1) 2.5 N
(2) 0.98 N
(3) 4.9 N
(4) 0.49 N
108. The force required just to move a body up an inclined plane is double the force required just to prevent the body sliding down. If the coefficient of friction is 0.25 , the angle of inclination of the plane is
(1) 36.8°
(2) 45°
(3) 30°
(4) 42.6°
109. A wooden block of mass M rests on a horizontal surface. A bullet of mass m moving in the horizontal direction strikes and gets embedded in it. The combined system covers a distance x on the surface. If the coefficient of friction between wood and the surface is $\boldsymbol{\mu}$, the speed of the bullet at the time of striking the block is (where m is mass of the bullet)
(1) $\sqrt{\frac{2 M g}{\mu m}}$
(2) $\sqrt{\frac{2 \mu(M+m) x}{m}}$
(3) $\sqrt{2 \mu g x}\left(\frac{M+m}{m}\right)$
(4) $\sqrt{2 \mu g x}\left(\frac{M+m}{m}\right)^{2}$
110. The slope of kinetic energy - displacement curve of a particle moving in a straight line motion is
(1) Equal to the acceleration of the particle
(2) Inversely proportional to the acceleration
(3) Directly proportional to the acceleration
(4) None of the above
111. A body of mass $\mathbf{m}_{\mathbf{1}}$ moving with uniform velocity of $40 \mathrm{~m} / \mathrm{s}$ collides with another mass $\mathbf{m}_{\mathbf{2}}$ at rest and then the two together begin to move with uniform velocity of 30 m / s. The ratio of their masses $\frac{\mathbf{m}_{1}}{\mathbf{m}_{2}}$ is
(1) 0.75
(2) 1.33
(3) 3.0
(4) 4.0
112. A bucket full of water is revolved in vertical circle of radius 2 m . What should be the maximum time-period of revolution so that the water doesn't fall off the bucket(nearly)
(1) 1 sec
(2) 0.5 sec
(3) 3 sec
(4) 5 sec
113. A ring of mass m can slide over a smooth vertical rod as shown in figure. The ring is connected to a spring of force constant $k=$ $4 \mathrm{mg} / \mathrm{R}$, where 2 R is the natural length of the spring. The other end of spring is fixed to the ground at a horizontal distance 2 R from the base of the rod. If the mass is released at a height 1.5 R , then the velocity of the ring as it reaches the ground is

(1) $\sqrt{g R}$
(2) $2 \sqrt{g R}$
(3) $\sqrt{2 g R}$
(4) $\sqrt{3 g R}$
114. A man is riding on a cycle with velocity $7.2 \mathrm{~km} / \mathrm{hr}$ up a hill having a slope 1 in 20 . The total mass of the man and cycle is 100 kg . The power of the man is
(1) 200 W
(2) 175 W
(3) 125 W
(4) 98 W
115. A bullet is fired from a rifle. If the rifle recoils freely, then the kinetic energy of the rifle is
(1) Less than that of the bullet
(2) More than that of the bullet
(3) Same as that of the bullet
(4) Equal or less than that of the bullet
116. A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement x is proportional to
(1) x^{2}
(2) e^{x}
(3) x
(4) $\log _{e} x$
117. Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of 14 m / s to the heavier block in the direction of the lighter block. The velocity of the centre of mass is
(1) $10 \mathrm{~m} / \mathrm{s}$
(2) $14 \mathrm{~m} / \mathrm{s}$
(3) $4 \mathrm{~m} / \mathrm{s}$
(4) $20 \mathrm{~m} / \mathrm{s}$
118. The acceleration of center of mass of system of two blocks of masses $\mathbf{m}_{\mathbf{1}}$ and $\mathbf{m}_{\mathbf{2}}\left(\mathbf{m}_{\mathbf{1}}>\mathbf{m}_{\mathbf{2}}\right)$ in Atwood's machine is
(1) $\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g$
(2) g
(3) $\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} g$
(4) $\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} g$
119. A uniform wire of length ' L ' is bent in the form of a circle. The shift in its centre of mass is
(1) $\frac{L}{\pi}$
(2) $\frac{2 L}{\pi}$
(3) $\frac{L}{2 \pi}$
(4) $\frac{L}{3 \pi}$
120. A shell moving in a parabolic path explodes in air. The centre of mass of the fragments move
(1) In the same parabolic path
(2) Vertically upwards
(3) Horizontally
(4) Vertically down wards
121. Arrange the following physical quantities in the decreasing order of dimension of length
I) Density
II) Pressure
III) Power
IV) Impulse
(1) I, II, III, IV
(2) III, II, I, IV
(3) IV, I, II, III
(4) III, IV, II, I
122. If $1 \mathrm{~kg}, 1$ meter and 1 minute are taken as the units of mass, length and time then the numerical value of force of 1000 dyne is
(1) 300 units
(2) 3600 units
(3) 0.36 units
(4) 36 units
123. When two resistors of (100 ± 2) ohms and $(300 \pm 1 \%)$ ohms are connected in series.
Value of equivalent resistance is
(1) $400 \mathrm{ohm} \pm 3 \%$
(2) $400 \mathrm{ohm} \pm 5$
(3) $400 \mathrm{ohm} \pm 3$
(4) $400 \mathrm{ohm} \pm 8 \%$
124. The value of $(2.2+4.08+3.125+6.3755)$ with due regard to significant places is
(1) 15.78
(2) 15.7805
(3) 15.780
(4) 15.8
125. The least count of the main scale a 'screw guage' is 1 mm . The minimum number of divisions on its circular scale required inorderto measure $5 \mu \mathrm{~m}$ diameter of a wire is
(1) 50
(2) 200
(3) 100
(4) 500
126. A centigrade and a Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermometer registers 140°. What is the temperature as registered by the Centigrade thermometer
(1) 30°
(2) 40°
(3) 60°
(4) 80°
127. A solid ball of metal has a concentric spherical cavity within it. If the ball is heated, the volume of the cavity will
(1) Increase
(2) Decrease
(3) Remain unaffected
(4) None of these
128. A uniform metal rod is used as a bar pendulum. If the room temperature rises by $10^{\circ} \mathbf{C}$, and the coefficient of linear expansion of the metal of the rod is $\mathbf{2 \times 1 0} \mathbf{0}^{\mathbf{- 6}}$ per ${ }^{\circ} \mathrm{C}$, the period of the pendulum will have percentage change of
(1) -2×10^{-3}
(2) -1×10^{-3}
(3) 2×10^{-3}
(4) 1×10^{-3}
129. A glass flask of volume one litre at $0^{\circ} \mathrm{C}$ is filled, level full of mercury at this temperature. The flask and mercury are now heated to $100^{\circ} \mathbf{C}$. How much mercury will spill out, if coefficient of volume expansion of mercury is $\mathbf{1 . 8 2} \times 10^{-4} /{ }^{\circ} \mathbf{C}$ and linear expansion of glass is $\mathbf{0 . 1} \times \mathbf{1 0}^{-\mathbf{4}} /{ }^{\circ} \mathrm{C}$ respectively
(1) 21.2 cc
(2) 15.2 cc
(3) 1.52 cc
(4) 2.12 cc
130. When a liquid, taken in a long cylindrical vessel of material with linear coefficient of expansion a is heated, the level of liquid did not change. The volume coefficient of expansion of liquid is
(1) 3 a
(2) 2 a
(3) a
(4) $4 a$
131. For an ideal gas $\mathrm{V}-\mathrm{T}$ curves at constant pressures $\mathrm{P}_{1}, \mathrm{P}_{2}$ are shown in figure, from the figure

(1) $P_{1}>P_{2}$
(2) $P_{1}<P_{2}$
(3) $P_{1}=P_{2}$
(4) we cannot say.
132. A faulty barometer tube is 90 cm long and it contains some air above mercury. The reading is 74.5 cm when the true atmospheric pressure is 76 cm . The true atmopsheric pressure if the reading on this barometer is 74 cm will be
(1) 75.45 cm
(2) 74.8 cm
(3) 74.3 cm
(4) 76.95 cm
133. If pressure of an ideal gas contained in a closed vessel is increased by 0.5%, the increase in temperature is $2^{\circ} \mathbf{C}$ the initial temperature of the gas is
(1) $400^{\circ} \mathrm{C}$
(2) $127^{\circ} \mathrm{C}$
(3) $300^{\circ} \mathrm{C}$
(4) $600^{\circ} \mathrm{C}$
134. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature ' T '. Neglecting all vibrational modes, the total internal energy of the system is ($\mathrm{R}=$ Universal gas constant)
(1) 4 R T
(2) 15 R T
(3) 9 R T
(4) 11 R T
135. Three closed vessels A, B and C at the same temperature T and contain gases which obey the Maxwellian distribution of velocities. Vessel A contains only $\mathbf{O}_{\mathbf{2}}$, vessal B only \mathbf{N}_{2} and vessal C consists a mixture of equal quantities of \mathbf{O}_{2} and \mathbf{N}_{2} .If the average speed of the \mathbf{O}_{2} molecules in vessel A is $\mathbf{v}_{\mathbf{1}}$, that of the $\mathbf{N}_{\mathbf{2}}$ molecules in vessel B is $\mathbf{v}_{\mathbf{2}}$, the average speed of the O_{2} molecules in vessel C is
(1) $\frac{\left(v_{1}+v_{2}\right)}{2}$
(2) v_{1}
(3) $\left(v_{1} v_{2}\right)^{1 / 2}$
(4) $\sqrt{\frac{\left(v_{1}+v_{2}\right)}{2}}$
136. Which of the following is a set of intensive properties
(1) Heat capacity, P^{H}
(2) Specific heat, temperature
(3) Boiling point, internal energy
(4) Density, volume
137. A subatomic particle of de-Broglie's wavelength $10^{-8} \mathrm{~m}$ is moving with a velocity $10^{4} \mathrm{~m} / \mathrm{s}$. If the uncertainity in measuring it's position is $\frac{1}{4 \pi} \mathrm{~m}$ then the uncertainity in finding it's velocity will be
\qquad m / s
(1) 10^{-2}
2) 10^{-3}
(3) 10^{-4}
(4) 10^{-6}
138. Which of the following is not a proper graphical representation for an ideal gas
(1)

(2)

(3)
(4)

139. Incorrect statement of the following is
(1) In aqueous solution reducing power of $\mathrm{Cr}^{+2}>\mathrm{Fe}^{+2}$
(2) In aqueous solution stability of $\mathrm{Cu}^{+2>} \mathrm{Cu}^{+}$
(3) CoF_{3} is stable due to high Lattice energy
(4) MnF_{7} exists but not $\mathrm{Mn}_{2} \mathrm{O}_{7}$
140. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} \xrightarrow[\Delta]{\text { Conc. } \mathrm{H}_{\Delta} \mathrm{SO}_{4}} C \xrightarrow[\Delta]{\mathrm{KMnO}_{4} / \mathrm{H}^{+}} D+E$

D and E are
(1)

(2) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}, \mathrm{CO}_{2}$
(3) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHO}, \mathrm{HCHO}$

141. As gas is allowed to expand in a well insulated container against a constant pressure of 2.5 atm from an initial volume of 2.5 litres to a final volume of 4.5 litres. Change in internal energy of the gas will be
(1) -500 J
(2) -505 J
(3) +505 J
(4) 1136 J
142. Correct representation of vander waal's equation for one mole of gas at very high pressure is
(1) $\left(P+\frac{a}{V^{2}}\right) V=R T$
(2) $\mathrm{PV}=\mathrm{RT}$
(3) $\left(P+\frac{a}{V^{2}}\right)(V-n b)=R T$
(4) $P V=P b+R T$
143. $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{H}_{2} \mathrm{O} \mathrm{H}^{+2}} \mathrm{C}$. C is
(1) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{CH}_{3}$
(2) $\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{NO}_{2}$
(3) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{2} \mathrm{NO}_{2}$
(4) $\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{NH}_{2}$
144. Consider a sample of hydrogen gas in which electronic transitions are occurring from $6^{\text {th }}$ state to ground state in all possible ways. Assuming no line is observed in Brackett series then the number of spectral lines will be
(1) 15
(2) 12
(3) 10
(4) 6
145. $A+2 B \rightarrow 2 C+3 D$. Entropy values of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ at 300 K are $10,20,5,30 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$ respectively. Energy not available to do useful work is
(1) 45 KJ
(2) 30 KJ
(3) 15 KJ
(4) 7.5 KJ
146. Energy of 2 s orbital will be highest in
(1) Hydrogen
(2) Lithium
(3) Sodium
(4) Potassium
147. Correct increasing order of stability of carbanions in
I)

II)

III)

IV)

(1) II,IV,I,III
(2) IV,II,I,III
(3) IV,I,II,III
(4) II,I,IV,III
148. At 600 K pressure exerted by a moist gas is 400 mm . Aqueous tension of the gas at 600 K is 40 mm . If this moist gas is transferred to a vessel double it's volume at 600 K then it's pressure becomes
(1) 180 mm
(2) 140 mm
(3) 220 mm
(4) 170 mm
149.

Number of geometrical isomers possible are
(1) 16
(2) 3
(3) 4
(4) 6
150. Which of the following in aqueous solution can act as a reductant?
(1) Ce^{+4}
(2) MnO_{4}^{-}
(3) $E u^{+2}$
(4) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$
151. Which of the following reaction is not proper
(1)

(2) $\mathrm{CH}_{3} \mathrm{CH}_{3} \xrightarrow[\left(\mathrm{CH}_{3} \mathrm{COO}_{2}\right) \mathrm{Mn}]{\mathrm{O}_{2}} \mathrm{CH}_{3} \mathrm{COOH}$
(3)

(4) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH} \xrightarrow[\text { an.ACl }]{\mathrm{HCl}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
152. Organic compound $(\mathrm{X}) \xrightarrow[\text { fusion }]{\mathrm{Na}}$ sodium fusion extract $\xrightarrow[H_{2} \mathrm{SO}_{4}]{\mathrm{FeS}_{4}}$ prussian blue. " X " is
(1) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2} \cdot \mathrm{HCl}$
(2)

(3) $\mathrm{NH}_{2}-\mathrm{CO}-\mathrm{NH}_{2}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{5}$
153. Standard enthalpies of Graphite, Hydrogen and Benzene are -390,-285 and $+60 \mathrm{KJ} / \mathrm{mole}$ respectively. Enthalpy of combustion of benzene will be
\qquad $\mathrm{KJ} /$ mole
(1) -3135
(2) -3255
(3) -3355
(4) -3145
154. Number of electrons possible with $\mathrm{n}=4, \mathrm{~m}=0$ with $S=\frac{-1}{2}$
(1) 8
(2) 12
(3) 4
(4) 2

155 The configuration

A) Hund's rule
B) Pauli's principle
C) Aufbau's principle
(1) A,B,C
(2) A,B only
(3) A,C only
(4) B only
156. Which among the following has highest RMS velocity at 300 K ?
(1) Dioxygen
(2) Sulphurdioxide
(3) Methane
(4) Dinitrogen
157. Four water samples A, B, C, D contain 0.1 ppm of $\mathrm{Fe}, 0.01 \mathrm{ppm}$ of $\mathrm{Cd}, 2 \mathrm{ppm}$ of Cu and 4 ppm of Zn respectively. Toxic, sample is
(1) A
(2) B
(3) C
(4) D

158. $\mathrm{CH}_{3}{ }^{\mathrm{OH}}$ IUPAC name of the compound is
(1) $(2 R, 3 S)$ 3-bromo-2-butanol
(2) $(2 S, 3 R)$ 3-bromo-2-butanol
(3) (2R,3R) 3-bromo-2-butanol
(4) $(2 \mathrm{~S}, 3 \mathrm{~S})$ 3-bromo-2-butanol
159. Spin only magnetic moment is not zero for
(1) $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(3) $\mathrm{TiCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$
160. Equivalent weight of ferrous oxalate acting as reducing agent is
(1) $\frac{M}{1}$
(2) $\frac{M}{6}$
(3) $\frac{M}{2}$
(4) $\frac{M}{3}$
161. Central metal ion in Wilkinson's catalyst is
(1) Co^{+3}
(2) Pt^{+2}
(3) Zn^{+2}
(4) $R h^{+}$
162. Incorrect statement is
(1) Greater the COD for a water sample higher will be its toxicity
(2) Troposphere is turbulent dusty zone containing air, water vapour and clouds
(3) $\mathrm{CH}_{2}=\mathrm{CH}_{2} \xrightarrow[\mathrm{Pd}^{+{ }^{2}}, \mathrm{Cu}^{+2}]{\mathrm{O}_{2}} \mathrm{CH}_{3} \mathrm{CHO}$
is an environment friendly reaction
(4) $\mathrm{CCl}_{2}=\mathrm{CCl}_{2}$ is an environmental friendly solvent that can be used in dry cleaning
163.

$\mathrm{III}=\square+{ }^{\text {Correct order of stability is }}$
(1) I $>$ II $>$ III
(2) $I I I>$ II $>$ I
(3) II $>$ III $>$ I
(4) $\mathrm{II}>\mathrm{I}>$ III
164. Which of the following is least reactive towards electrophilic substitution
(1)

(2)

(3)

(4)

165.

A	B
I) $\left[\mathrm{Cr}(\text { en })_{3}\right]^{+3}$	a) Geometrical isomerism only
II) $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$	b) Ionisation isomerism
III) Sq. planar $\left[\mathrm{Pt}(\mathrm{Br})(\mathrm{Cl})(\mathrm{Py})\left(\mathrm{NH}_{3}\right)\right]$	 geometrical isomerism
IV) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{Cl}$	d) Optical isomerism only

Correct match is
I II III IV
(1) a c d b
(2) $a \mathrm{~b} d \mathrm{c}$
(3) d c a b
(4) d c d a
166. Which of the following is not a proper reaction
(1) $\mathrm{MnO}_{4}^{-2} \xrightarrow{\mathrm{H}^{+}} \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}$
(2) $\mathrm{MnO}_{4}^{-}+\mathrm{I}^{-} \xrightarrow{\mathrm{OH}^{-}} \mathrm{Mn}^{+2}+\mathrm{I}_{2}$
(3) $\mathrm{MnO}_{4}^{-}+\mathrm{Mn}^{+2} \xrightarrow{\mathrm{ZnSO}_{4}} \mathrm{MnO}_{2}$
(4) $\mathrm{MnO}_{4}^{-}+\mathrm{S}^{-2} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{+2}+\mathrm{S}$
$\stackrel{\ominus}{-}$
167. In $\mathrm{CH}_{2}=\mathrm{CH}$ the lone pair of electrons of carbanion are present in \qquad orbital
(1) $2 P$
(2) Sp^{2}
(3) SP
(4) SP^{3}
168. Sink to carbon monoxide is
(1) Haemoglobin
(2) Trees
(3) Human beings
(4) Micro organisms of soil
169. Pka is least for
(1) NH_{3}
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(3) $\mathrm{CH} \equiv \mathrm{CH}$
(4) $\mathrm{H}_{2} \mathrm{O}$
170.

$\xrightarrow{\mathrm{HBr}} X($ major $) . \mathrm{X}$ is
(1)

(2)

176. Wrong match is
(1) $\mathrm{Cu}>\mathrm{Au}>\mathrm{Ag} \ldots .$. .melting point
(2) $\mathrm{Ni}>\mathrm{Cu}>\mathrm{Zn} \ldots \ldots$ atomic size
(3) $\mathrm{Sc}>\mathrm{Y}>\mathrm{La} \ldots \ldots . \mathrm{IP}_{1}$
(4) $\mathrm{Cr}>\mathrm{V}>\mathrm{Ti}$.... Valency w.r.t fluorine
177. Wrong match is
(1) Ninhydrin..... detection of amino acids
(2) Paper chromatography... stationary phase is liquid
(3) Glycerol \qquad .purified by simple distillation
(4) Nitro benzenepurified by steam distillation
178. Three homoleptic octahedral complexes are formed by a metal with ligands $\mathrm{L}_{1}, \mathrm{~L}_{2}$, L_{3} respectively by absorbing Blue, red and green light. Correct increasing field strength of ligands will be
(1) $\mathrm{L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{1}$
(2) $\mathrm{L}_{1}, \mathrm{~L}_{3}, \mathrm{~L}_{2}$
(3) $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$
(4) $\mathrm{L}_{2}, \mathrm{~L}_{1}, \mathrm{~L}_{3}$
179. Statement -I : Emperical formula of acetylene and benzene is same
Statement-II : Molecular formula of acetylene and benzene is same
(1) I and II are true
(2) I is true, II is false
(3) I is false, II is true
(4) I \& II are false
180. Number of isomeric alkenes possible for $\mathrm{C}_{4} \mathrm{H}_{8}$
(1) 2
(2) 3
(3) 4
(4) 6

BOTANY

1$)$	$\mathbf{4}$	$2)$	$\mathbf{4}$	$3)$	$\mathbf{4}$	$\mathbf{4})$	$\mathbf{3}$	$5)$	$\mathbf{1}$	$6)$	$\mathbf{3}$	$7)$	$\mathbf{4}$	$8)$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{3}$	$10)$	$\mathbf{4}$
11$)$	$\mathbf{3}$	$12)$	$\mathbf{2}$	$13)$	$\mathbf{2}$	$14)$	$\mathbf{2}$	$15)$	$\mathbf{3}$	$16)$	$\mathbf{3}$	$17)$	$\mathbf{3}$	$18)$	$\mathbf{4}$	$19)$	$\mathbf{1}$	$20)$	$\mathbf{1}$
21$)$	$\mathbf{2}$	$22)$	$\mathbf{3}$	$23)$	$\mathbf{2}$	$24)$	$\mathbf{3}$	$25)$	$\mathbf{4}$	$26)$	$\mathbf{2}$	$27)$	$\mathbf{1}$	$28)$	$\mathbf{4}$	$29)$	$\mathbf{1}$	$30)$	$\mathbf{1}$
31$)$	$\mathbf{0}$	$32)$	$\mathbf{2}$	$33)$	$\mathbf{2}$	$34)$	$\mathbf{1}$	$35)$	$\mathbf{4}$	$36)$	$\mathbf{3}$	$37)$	$\mathbf{3}$	$38)$	$\mathbf{3}$	$39)$	$\mathbf{2}$	$40)$	$\mathbf{4}$
41$)$	$\mathbf{4}$	$42)$	$\mathbf{3}$	$43)$	$\mathbf{4}$	$44)$	$\mathbf{4}$	$45)$	$\mathbf{4}$										

ZOOLOGY

46)		47)	3	48)	1	49)	1	50)	2	51)	2	52)	1	53)	3	54)	2	55)	3
56)	3	57)	3	58)	2	59)	3	60)	2	61)	1	62)	3	63)	3	64)	1	65)	2
66)	1	67)	3	68)	4	69)	2	70)	3	71)	2	72)	4	73)	4	74)	4	75)	1
76)	4	77)	2	78)	2	79)	4	80)	1	81)	2	82)	2	83)	3	84)	4	85)	3
86)	1	87)	4	88)	2	89)	3												

PHYSICS

46$)$	$\mathbf{4}$	$47)$	$\mathbf{2}$	$48)$	$\mathbf{2}$	$49)$	$\mathbf{2}$	$50)$	$\mathbf{2}$	$51)$	$\mathbf{3}$	$52)$	$\mathbf{2}$	$53)$	$\mathbf{3}$	$54)$	$\mathbf{2}$	$55)$	$\mathbf{2}$
56$)$	$\mathbf{1}$	$57)$	$\mathbf{3}$	$58)$	$\mathbf{3}$	$59)$	$\mathbf{2}$	$60)$	$\mathbf{4}$	$61)$	$\mathbf{4}$	$62)$	$\mathbf{2}$	$63)$	$\mathbf{1}$	$64)$	$\mathbf{3}$	$65)$	$\mathbf{3}$
66$)$	$\mathbf{3}$	$67)$	$\mathbf{3}$	$68)$	$\mathbf{2}$	$69)$	$\mathbf{4}$	$70)$	$\mathbf{1}$	$71)$	$\mathbf{1}$	$72)$	$\mathbf{1}$	$73)$	$\mathbf{4}$	$74)$	$\mathbf{3}$	$75)$	$\mathbf{1}$
76$)$	$\mathbf{4}$	$77)$	$\mathbf{4}$	$78)$	$\mathbf{2}$	$79)$	$\mathbf{4}$	$80)$	$\mathbf{2}$	$81)$	$\mathbf{3}$	$82)$	$\mathbf{1}$	$83)$	$\mathbf{4}$	$84)$	$\mathbf{2}$	$85)$	$\mathbf{2}$
86$)$	$\mathbf{2}$	$87)$	$\mathbf{1}$	$88)$	$\mathbf{2}$	$89)$	$\mathbf{4}$	$90)$	$\mathbf{2}$										

CHEMISTR Y

136$)$	$\mathbf{2}$	$137)$	$\mathbf{3}$	$138)$	$\mathbf{2}$	$139)$	$\mathbf{4}$	$140)$	$\mathbf{2}$	$141)$	$\mathbf{2}$	$142)$	$\mathbf{4}$	$143)$	$\mathbf{2}$	$144)$	$\mathbf{3}$	$\mathbf{1 4 5)}$	$\mathbf{3}$
146$)$	$\mathbf{1}$	$147)$	$\mathbf{1}$	$148)$	$\mathbf{3}$	$149)$	$\mathbf{4}$	$150)$	$\mathbf{3}$	$151)$	$\mathbf{4}$	$152)$	$\mathbf{3}$	$153)$	$\mathbf{0}$	$154)$	$\mathbf{3}$	$\mathbf{1 5 5}$	$\mathbf{2}$
156$)$	$\mathbf{3}$	$157)$	$\mathbf{2}$	$158)$	$\mathbf{3}$	$159)$	$\mathbf{3}$	$160)$	$\mathbf{4}$	$161)$	$\mathbf{4}$	$162)$	$\mathbf{4}$	$163)$	$\mathbf{4}$	$164)$	$\mathbf{1}$	$165)$	$\mathbf{3}$
166$)$	$\mathbf{2}$	$167)$	$\mathbf{2}$	$168)$	$\mathbf{4}$	$169)$	$\mathbf{4}$	$170)$	$\mathbf{3}$	$171)$	$\mathbf{2}$	$172)$	$\mathbf{1}$	$173)$	$\mathbf{4}$	$174)$	$\mathbf{2}$	$175)$	$\mathbf{3}$
176$)$	$\mathbf{2}$	$177)$	$\mathbf{3}$	$178)$	$\mathbf{1}$	$179)$	$\mathbf{2}$	$180)$	$\mathbf{3}$										

91. As $v^{2}=u^{2}+2 a s \Rightarrow(2 u)^{2}=u^{2}+2 a s \Rightarrow 2 a s=3 u^{2}$

Now, after covering an additional distance s, if velocity becomes v, then,

$$
v^{2}=u^{2}+2 a(2 s)=u^{2}+4 a s=u^{2}+6 u^{2}=7 u^{2}
$$

$$
\therefore v=\sqrt{7} u . .
$$

92. The velocity of balloon at height h,

$$
v=\sqrt{2\left(\frac{g}{8}\right)^{h}}
$$

When the stone released from this balloon, it will go upward with velocity $v=\frac{\sqrt{g h}}{2}$
(Same as that of balloon). In this condition time taken by stone to reach the ground

$$
\begin{aligned}
& \quad t=\frac{v}{g}\left[1+\sqrt{1+\frac{2 g h}{v^{2}}}\right]=\frac{\sqrt{g h} / 2}{g}\left[1+\sqrt{1+\frac{2 g h}{g h / 4}}\right] \\
& =\frac{2 \sqrt{g h}}{g}=2 \sqrt{\frac{h}{g}}
\end{aligned}
$$

93. For first projectile, $h_{1}=u t-\frac{1}{2} g t^{2}$

For second projectile, $h_{2}=u(t-T)-\frac{1}{2} g(t-T)^{2}$
When both meet i.e. $h_{1}=h_{2}$

$$
\begin{aligned}
& u t-\frac{1}{2} g t^{2}=u(t-T)-\frac{1}{2} g(t-T)^{2} \\
& \Rightarrow u T+\frac{1}{2} g T^{2}=g t T \Rightarrow t=\frac{u}{g}+\frac{T}{2}
\end{aligned}
$$

94. $\frac{d v}{d t}=-2.5 \sqrt{v}$
$d v=-2.5 \sqrt{v} d t$
Ò $\sqrt{v} d v=-2.5$ Ò $d t$
At $t=0, v=6.25$
If $v=0$ then $t=$?
Simplifying we get $t=2 \mathrm{sec}$
95. area in the graph $=v-u$
$55=\mathrm{v}-0$
$\mathrm{V}=55 \mathrm{~m} / \mathrm{s}$
96. $\quad \tan 60^{\circ}=\frac{12}{V_{R}}$
$V_{R}=4 \sqrt{3} \mathrm{~m} / \mathrm{s}$
97. $R_{\text {max }}=\frac{u^{2}}{g}=400 m \quad\left(\right.$ For $\left.\theta=45^{\circ}\right)$
$H_{\text {max }}=\frac{u^{2} \sin ^{2} 45^{0}}{2 g}=\frac{400}{4}=100 \mathrm{~m}$
98. Vertical component of velocity of ball at point P

$$
v_{V}=0+g t=10 \times 0.4=4 \mathrm{~m} / \mathrm{s}
$$

Horizontal component of velocity $=$ initial velocity
$\Rightarrow v_{H}=4 \mathrm{~m} / \mathrm{s}$
So the speed with which it hits the ground

$$
v=\sqrt{v_{H}^{2}+v_{V}^{2}}=4 \sqrt{2} \mathrm{~m} / \mathrm{s}
$$

and $\tan \theta=\frac{v_{V}}{v_{H}}=\frac{4}{4}=1 \Rightarrow \theta=45^{\circ}$
It means the ball hits the ground at an angle of 45° to the horizontal.
Height of the table
$h=\frac{1}{2} g t^{2}=\frac{1}{2} \times 10 \times(0.4)^{2}=0.8 \mathrm{~m}$
Horizontal distance travelled by the ball from the edge of table $h=u t=4 \times 0.4=1.6 \mathrm{~m}$
99. $t=\frac{d}{\sqrt{v^{2}{ }_{b}-v_{r}^{2}}}=\frac{2}{\sqrt{36-9}}=\frac{2}{\sqrt{27}}$
100. $a_{t}=g \sin 30^{\circ}=5$
101. For stationary lift $t_{1}=\sqrt{\frac{2 h}{g}}$
and when the lift is moving up with constant acceleration $t_{2}=\sqrt{\frac{2 h}{g+a}} \therefore t_{1}>t_{2}$
102. $F=\frac{d p}{d t}=v\left(\frac{d M}{d t}\right)=\alpha v^{2}$
$a=\frac{F}{M}=\frac{\alpha v^{2}}{M}$
103. $F=600-2 \times 10^{5} t=0 \Rightarrow t=3 \times 10^{-3} \mathrm{sec}$

Impulse $I=\int_{0}^{t} F d t=\int_{0}^{3 \times 10^{-3}}\left(600-2 \times 10^{3} t\right) d t$ $=\left[600 t-10^{5} t^{2}\right]_{0}^{3 \times 10^{-3}}=0.9 \mathrm{~N} \times \mathrm{sec}$
104. Let the mass of a block is m. It will remains stationary if forces acting on it are in equilibrium i.e,

$$
m a \cos \alpha=m g \sin \alpha \Rightarrow a=g \tan \alpha
$$

105. area in the graph $=0$
106. attwoods machine, $a=\left(\frac{2-1}{2+1}\right) g=\frac{g}{3}$
$\mathrm{V}=\mathrm{u}+\mathrm{at}=0+(\mathrm{g} / 3) 1=\mathrm{g} / 3$
For 1 kg mass: $h_{1}=v t-\frac{1}{2} g t^{2}=\left(\frac{g}{3}\right) t-\frac{1}{2} g t^{2}$
For 1 kg mass: $h_{2}=\frac{1}{2} g t^{2}$
If $h_{2}=h_{1}$ then $\mathrm{t}=1 / 3 \mathrm{sec}$
107. Limiting friction $F_{l}=\mu_{s} R=0.5 \times(5)=2.5 \mathrm{~N}$

Since downward force is less than limiting friction therefore block is at rest so the static force of friction will work on it.
$F_{s}=$ downward force $=$ Weight
$=0.1 \times 9.8=0.98 \mathrm{~N}$
108. Retardation in upward motion
$=g(\sin \theta+\mu \cos \theta)$
\therefore Force required just to move up $F_{u p}=m g(\sin \theta+\mu \cos \theta)$

Similarly for down ward motion a $=g(\sin \theta-\mu \cos \theta)$
\therefore Force required just to prevent the body sliding down
$F_{d n}=m g(\sin \theta-\mu \cos \theta)$
According to problem $F_{u p}=2 F_{d n}$
$\Rightarrow m g(\sin \theta+\mu \cos \theta)=2 m g(\sin \theta-\mu \cos \theta)$
$\Rightarrow \sin \theta+\mu \cos \theta=2 \sin \theta-2 \mu \cos \theta$
$\Rightarrow 3 \mu \cos \theta=\sin \theta \Rightarrow \tan \theta=3 \mu$
$\Rightarrow \theta=\tan ^{-1}(3 \mu)=\tan ^{-1}(3 \times 0.25)=\tan ^{-1}(0.75)=36.8^{\circ}$

109. Let speed of the bullet $=v$

Speed of the system after the collision $=V$
By conservation of momentum

$$
m v=(m+M) V
$$

$\Rightarrow V=\frac{m v}{M+m}$
So the initial K.E. acquired by the system
$=\frac{1}{2}(M+m) V^{2}=\frac{1}{2}(m+M)\left(\frac{m v}{M+m}\right)^{2}=\frac{1}{2} \frac{m^{2} v^{2}}{(m+M)}$
This kinetic energy goes against friction work done by friction = $\mu R \times x=\mu(m+M) g \times x$
By the law of conservation of energy

$$
\begin{align*}
& \frac{1}{2} \frac{m^{2} v^{2}}{(m+M)}=\mu(m+M) g \times x \Rightarrow \\
& v^{2}=2 \mu g x\left(\frac{m+M}{m}\right)^{2} \\
\therefore & v=\sqrt{2 \mu g x}\left(\frac{M+m}{m}\right) \tag{110}
\end{align*}
$$

$\frac{d E}{d x}=\frac{1}{2} m \times 2 v \frac{d v}{d x}=m v \times \frac{d v}{d t} \times \frac{d t}{d x}=m v \times \frac{a}{v}=m a$
111. Initial momentum of the system $=$ $m_{1} \times 40+m_{2} \times 0$
Final momentum of the system $=$ $\left(m_{1}+m_{2}\right) \times 30$

By the law of conservation of momentum
$m_{1} \times 40+m_{2} \times 0=\left(m_{1}+m_{2}\right) \times 30$
$\Rightarrow 40 m_{1}=30 m_{1}+30 m_{2} \Rightarrow 10 m_{1}=30 m_{2}=\frac{m_{1}}{m_{2}}=3$
112 Minimum angular velocity $\omega_{\text {min }}=\sqrt{g / R}$
$\therefore T_{\text {max }}=\frac{2 \pi}{\omega_{\text {min }}}=2 \pi \sqrt{\frac{R}{g}}=2 \pi \sqrt{\frac{2}{10}}=2 \sqrt{2} \cong 3 \mathrm{~s}$
113. extension in the spring
$\mathrm{x}=\sqrt{(1.5 R)^{2}+(2 R)^{2}}-2 R=0.5 R$

FROM CONSERVATION OF ENERGY

$m g(1.5) R+\frac{1}{2} K x^{2}=\frac{1}{2} m v^{2}$
Where $\mathrm{k}=4 \mathrm{mg} / \mathrm{R}$
Simplifying we get,
114. $v=7.2 \frac{\mathrm{~km}}{\mathrm{~h}}=7.2 \times \frac{5}{18}=2 \mathrm{~m} / \mathrm{s}$

Slope is given 1 in 20
$\therefore \sin \theta=\frac{1}{20}$
When man and cycle moves up then component of weight opposes it motion i.e. $F=m g \sin \theta$

So power of the man $P=F \times v=m g \sin \theta \times v$
$=100 \times 9.8 \times\left(\frac{1}{20}\right) \times 2=98$ Watt
115. $E=\frac{P^{2}}{2 m}$.

If $P=$ constant then
$E \propto \frac{1}{m}$ i.e. kinetic energy of heavier body will be less. As the mass of gun is more than bullet therefore it possess less kinetic energy
116. This condition is applicable for simple harmonic motion. As particle moves from mean position to extreme position its potential energy increases according to expression $U=\frac{1}{2} k x^{2}$ and accordingly kinetic energy decreases
117. Just after collision

$$
V_{c}=\frac{10 \times 14+4 \times 10}{10+4}=10 \mathrm{~m} / \mathrm{s}
$$

Since spring force is internal force, It cannot change the linear momentum of the (two mass + spring) system. Therefore V_{c} remains the same.
118.

$$
\begin{aligned}
a_{c m} & =\left(\frac{m_{1} a-m_{2} a}{m_{1}+m_{2}}\right)=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) a \\
& =\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} g
\end{aligned}
$$

119. $L=2 \pi r$

$$
\text { Shift }=\mathrm{r}=L / 2 \pi
$$

120. theory concept.
121. conceptual memory
122. $n_{1} u_{1}=n_{2} u_{2}$
123. absolute errors should be added. But not percentage errors
124. Rounding off to least number of decimal places.
125.L.C. $=($ Value of 1 MSD$) /($ No of HSD)
$5 \boldsymbol{\mu} \mathrm{~m}=(1 \mathrm{~mm}) \mathrm{n}$
$\mathrm{n}=200$
125. $\frac{C}{5}=\frac{F-32}{9} ; \frac{C}{5}=\frac{(140-32)}{9} ; C=60^{\circ}$
126. theory concept
127. Fractional change in period

$$
\frac{\Delta T}{T}=\frac{1}{2} \alpha \Delta \theta=\frac{1}{2} \times 2 \times 10^{-6} \times 10=10^{-5}
$$

$\%$ change $=\frac{\Delta T}{T} \times 100=10^{-5} \times 100=10^{-3} \%$
129. Due to volume expansion of both liquid and vessel, the change in volume of liquid relative to container is given by $\Delta V=$ $V_{0}\left[\gamma_{L}-\gamma_{g}\right] \Delta \theta$

Given $V_{0}=1000 c c, \alpha_{g}=0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
$\therefore \gamma_{g}=3 \alpha_{g}=3 \times 0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}=0.3 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
$\therefore \Delta \mathrm{V}=1000\left[1.82 \times 10^{-4}-0.3 \times 10^{-4}\right] \times 100$ $=15.2 \mathrm{cc}$
130. $V_{2}=V_{1}\left(1+\gamma_{R} \Delta t\right)$
$a_{2} h=a_{1} h\left(1+\gamma_{R} \Delta t\right)$
$a_{1}(1+\beta \Delta t) h=a_{1} h\left(1+\gamma_{R} \Delta t\right)$
$\beta=\gamma_{R}$
131. At constant temperature, if Volume is high then Pressure is low
132. $(90-74.5)(76-74.5)=(90-74)(\mathrm{H}-74)$
$\mathrm{H}=75.45 \mathrm{~cm}$
133. $\frac{\Delta P}{P} \times 100=\frac{\Delta T}{T} \times 100$
$0.5=\frac{4}{T} \times 100$
$\mathrm{T}=400 \mathrm{~K}=127^{\circ} \mathrm{C}$
134. $U=n_{1} C_{V_{1}} T+n_{2} C_{V_{2}} T$
$=2\left(\frac{5 R}{2}\right) T+4\left(\frac{3 R}{2}\right) T=11 R T$
135. Conceptual

