A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARASHTRA,DELHI,RANCHI,CHANDIGARH

SEC: SR AIIMS S60
NEET GRAND TEST - 4
DATE : 23-01-2020
SUB: BOTANY
Max. Marks : 720

IMPORTANT INSTRUCTIONS :

* Pattern of the Entrance Examination:-

Paper containing 180 objective type questions ,from Biology, Physics and Chemistry

* Use Blue/Black Ball Point Pen only to darken the appropriate circle. Answers marked with pencil would not be evaluated.
* Each item carries 4marks. For each correct response the candidate will get 4 marks. For each incorrect response 1mark will be deducted from the total score

1. NBRI is located in
(1) New Delhi
(2) Lucknow
(3) Kolkata
(4) Simla
2. How many of the following are found in Euglena?

70s Ribosomes ; cell wall ; plastids ;
80s Ribosomes ; mitochondria
(1) 5
(2) 3
(3) 2
(4) 4

03 . Identify the following

(1) Rhizopus
(2) Mucor
(3) Aspergillus

(4) Trichoderma

4. Statement-I : Conducting tissues are absent in the gametophytes of spermatophytes.

Statement-II : Archegoniatae includes Bryophyta, Pteriodophyta and Gymnosperms.
(1) Both Statement I and Statement II are correct
(2) Statement I is correct, Statement II is wrong
(3) Statement I is wrong, Statement II is correct
(4) Both Statement I and Statement II are wrong

05 . Identify the mismatch
(1) Alstonia - Whorled phyllotaxy
(2) Banana - Sucker
(3) Jasmine - Stolon
(4) Pineapple - Rhizome
06. The United Nations Climate Change Conference (Conference of the Parties, COP) in the year 2019 was held at:
(1) Glasgow, UK
(2) Madrid, Spain
(3) Geneva, Switzerland
(4) Kyoto, Japan
07. The government of India has initiated stringent norms for automobile fuels for the reduction in \qquad and \qquad in petrol and diesel:
(1) Sulphur; aromatic content
(2) CO_{2}; phosphine
(3) Lead; CH_{4}
(4) Aromatic content; CO_{2}
08. Mass of living matter at a trophic level in an area at any time is called
(1) Standing state
(2) Standing crop
(3) Detritus
(4) Humus
09. Identify the correct type of food chain:
rotting vegetable matter \rightarrow dung fly \rightarrow common frog \rightarrow snake
(1) Decomposer food chain
(2) Detritus food chain
(3) Grazing food chain
(4) Predator food chain
10. The extinction of the passenger pigeon was mostly due to:
(1) Increased number of predatory birds
(2) Over exploitation by humans
(3) Non-availability of food
(4) Bird flu virus infection
11. Polyadelphous stamens are found in
(1) Citrus
(2) Pisum
(3) Hibiscus
(4) Helianthus
12. Identify the incorrect statement
(1) Radial vascular bundles are closed
(2) Conjoint collateral vascular bundles are
either open or closed
(3) Vascular bundles are closed in dicot stems
(4) Xylem and phloem are arranged in alternate manner on different radii in radial vascular bundles
13. Complete secondary lateral meristem is
(1) Cork cambium in Dicot stem
(2) Vascular cambium in Dicot root
(3) Cork cambium in Dicot root
(4) All the above
14. The following is not related to SER
(1) Protein synthesis
(2) Lipid synthesis
(3) Synthesis of steroidal hormones in a cells
(4) Transport of substances
15. Pigments are completely absent in
(1) Amyloplasts
(2) Elaioplasts
(3) Aleuroplasts
(4) All the above
16. Which of the following is not used for construction of ecological pyramids?
(1) Fresh weight
(2) Dry weight
(3) Number of individuals
(4) Rate of energy flow
17. Two opposing forces operate in growth and development of every population. One of them is the ability to reproduce at a given rate. The opposing force is:
(1) Morbidity
(2) Fecundity
(3) Biotic potential
(4) Environmental resistance
18. Measuring Biochemical Oxygen Demand (BOD) is a method used for
(1) Measuring the activity of Saccharomyces cerevisiae in producing curd on a commercial scale
(2) Working out the efficiency of R.B.Cs. about their capacity to carry oxygen
(3) Estimating the amount of organic matter in sewage water
(4) Working out the efficiency of oil driven automobile engines
19. Arrange the steps of ADA - deficiency treatment in sequence:
I. The lymphocytes with ADA cDNA are returned to the patient
II. The lymphocytes from the blood of the patient are grown in culture outside the body
III. A functional ADA cDNA (using retroviral vector) is introduced into the lymphocytes
(1) II $\rightarrow I I I \rightarrow I$
(2) $I \rightarrow I I \rightarrow I I I$
(3) II $\rightarrow I \rightarrow I I I$
(4) III $\rightarrow I I \rightarrow I$
20. Outbreeding is an important strategy of animal husbandry because it:
(1) is useful in overcoming inbreeding depression
(2) is useful in producing pure-lines of animals
(3) helps is accumulation of superior genes
(4) exposes harmful recessive genes that are eliminated by selection
21. Identify A and B respectively

(1) Central sheath, Inter doublet bridge
(2) Central microtubule, radial spoke
(3) Radial spoke, Central microtubule
(4) Central sheath, Radial spoke
22. Identify the following structure

(1) Adenosine
(2) Deoxy adenylic acid
(3) Adenylic acid
(4) ADP
23. Identify the correct match

List-I
List-II

A) Curcumin	I) Glucose transporter	
B) Concanavalin A	II) Drug	
C) Glut - 4	III) Toxin	
D) Ricin		IV) Lectin
	A	B
(1)	II	IV
(2)	IV	I
(3)	III	I
(4)	IV	III
(4)	IV	II
(II

B) Concanavalin A
C) Glut - 4
D) Ricin

Lectin
24.

The enzyme which catalyse the above reaction belongs to the following class
(1) Lyases
(2) Hydrolases
(3) Transferases
(4) Ligases
25. Identify the following stage

(1) Metaphase
(2) Metaphase I
(3) Anaphase
(4) Transition to metaphase
26. HIV targets include all of the following except:
(1) Helper T - cells
(2) Macrophages
(3) Cells bearing CD4
(4) Cytotoxic T- cells
27. The prevalence of dark-coloured moths in industrially polluted areas where they are better camouflaged than the paler forms (industrial melanism) is an example of :
(1) Disruptive selection
(2) Stabilising selection
(3) Directional selection
(4) Balanced polymorphism
28. Example of a homologous organ / structure are
(1) The arm of a human, wing of a bird
(2) Wing of an insect, wing of a bird
(3) Leg of a dog, leg of a spider
(4) Potato and radish
29. Choose the incorrect match w.r.t. HGP:
(1) 'Expressed Sequence Tags' \rightarrow used to identify gene transcripts (m-RNA), and are instrumental in gene discovery
(2) 'Sequence Annotation' \rightarrow sequencing both coding and non-coding sequences then marking specific regions with descriptive information about structure or function.
(3) YAC and BAC \rightarrow Cloning vectors
(4) Human X chromosome \rightarrow The last chromosome to be sequenced
30. What is the relationship between the child-1 and parents?

(1) Biological to only mom
(2) Biological to only dad
(3) Biological to both
(4) Biological to neither
31. Identify the correct statement
(1) Diakinesis represents transition to Metaphase-I
(2) Terminalization occurs in diplotene
(3) Synapsis occurs in pachytene
(4) Seggregation chromosomes occur in Anaphase-II
32. The following is incorrect regarding pure water in a beaker at atmospheric pressure.
(1) $\Psi_{w}=O$
(2) $\Psi_{S}=$ Less than O
(3) $\Psi \pi=O$
(4) $\Psi p=O$
33. Essential element needed for the formation of mitotic spindle is
(1) Calcium
(2) Sulphur
(3) Iron
(4) Potassium
34. Proteins can enter the respiratory pathway in the form of
(1) Pyruvate
(2) Acetyl CoA
(3) Some stage within the Kreb's cycle
(4) All the above
35. Formation of secondary cortex during secondary growth is example for
(1) Dedifferentiation
(2) Redifferentiation
(3) Differentiation
(4) Plasticity
36. A widely accepted method of contraception in India is
(1) IUDs
(2) Diaphragms
(3) Tubectomy
(4) Cervical caps
37. Correct statement w.r.t. Medical termination of pregnancy is:
(1) MTP is essential in certain cases where continuation of the pregnancy could be fatal either to the mother or to the foetus or both
(2) MTP is most unsafe during the first trimester of pregnancy
(3) MTP is quite safe even if performed in the third trimester, provided it is performed by a trained obstetrician
(4) MTP Act (1971) bans every type of terminations of pregnancy in India.
38. Which of the following produces the male sex hormone?
(1) Rete testis
(2) Seminiferous tubule
(3) Leydig cell
(4) Scrotum
39. If the menstrual cycle is of 32 days, then ovulation would occur on the:
(1) $14^{\text {th }}$ day
(2) $18^{\text {th }}$ day
(3) $28^{\text {th }}$ day
(4) $5^{\text {th }}$ day
40. Which of the following is not an effect of stimulation of sympathetic nervous system?
(1) Dilation of pupil
(2) Inhibition of peristalsis
(3) Elevation of blood pressure
(4) Stimulation for saliva secretion
41. The first stable compound in C_{4} pathway is formed in
(1) Chloroplast of mesophyll cells
(2) Chloroplast of Bundle sheath cells
(3) Cytosol of mesophyll cells
(4) Cytosol of Bundle sheath cells
42. Clear cut vegetative, reproductive and senescent phases are seen in
(1) Cycas
(2) Pinus
(3) Ficus
(4) Oryza
43. Identify the odd one based on the type of fusing gametes
(1) Fucus
(2) Cladophora
(3) Cycas
(4) Pinus
44. Statement-I : Gametes are always formed by Meiosis.

Statement-II : Gametes are Haploid.
(1) Both Statement I and Statement II are correct
(2) Statement I is correct, Statement II is wrong
(3) Statement I is wrong, Statement II is correct
(4) Both Statement I and Statement II are wrong
45. If anther is microsporophyll, then embryosac is
(1) Female gamete
(2) Female gametophyte
(3) Ovule

(4) Ovary

46. During generation of a nerve impulse, the Action Potential results from the movement of:
(1) K^{+}ions from intracellular fluid to extracellular fluid
(2) Na^{+}ions from extracellular fluid to intracellular fluid
(3) K^{+}ions from extracellular fluid to intracellular fluid
(4) Na^{+}ions from intracellular fluid to extracellular fluid
47. Corneal transplantation is generally successful in humans as:
(1) cornea lacks blood supply
(2) it is a transparent membrane
(3) it lacks nerve fibres
(4) it is a dead structure
48. Choose the incorrect match:
(1) Myopia - short sightedness
(2) Hypermetropia - Can be corrected by using concave lens
(3) Cataract - Opaque lens
(4) Glaucoma - increased intraocular pressure
49. Which of the following is correct for 'pars nervosa'?
(1) It stocks and releases hormones synthesised by hypothalamus
(2) It synthesises many hormones of its own
(3) It is present in childhood but gets atrophied in adults
(4) It is vestigial in humans
50. Name the basic structural and functional unit of the nervous system.
(1) Neuroglia
(2) Glial cells
(3) Neurons
(4) Perikaryon
51. The number of male gametes involved in double fertilization
(1) 3
(2) 4
(3) 2
(4) 5
52. Pollination is maize is
(1) Entomophily
(2) Hydrophily
(3) Malocophily
(4) Anemophily
53. Identify the incorrect statement
(1) PEN divides to form endosperm tissue after embryogenesis
(2) Endosperm development precedes embryo development
(3) Monocot seeds are generally endospermic
(4) Cells of Aleurone layer are triploid
54. Gametes are
(1) Always heterozygous
(2) Always homozygous
(3) Always hemizygous
(4) Always diploid
55. Pea plant having Bb genotype shows complete dominance for
(1) Shape of starch grain
(2) Size of starch grain
(3) Size of the seed
(4) Shape of the seed
56. Calculation, contemplation and cognition are human activities associated with increased activity in the:
(1) Cerebrum
(2) Cerebellum
(3) Spinal cord
(4) Pituitary gland
57. Read the statements regarding muscle proteins:
I. Each F-actin strand is composed of a string of subunits called globular (G) actin
II. Regulatory protein troponin is distributed at regular intervals on myosin filaments
III. Myosin is a thick filament which is also a polymerized protein
IV. The globular head of meromyosin consists of light meromyosin (LMM)

Which of the above statements are correct?
(1) I, II and III
(2) I, II and IV
(3) I and III
(4) II and IV
58. The most freely movable joint of all synovial joints is:
(1) Ball and socket joint
(2) Hinge joint
(3) Pivot joint
(4) Gliding joint
59. Motor neurons electrically stimulate nearby muscle fibres at \qquad
(1) Creatine phosphate
(2) Actin filament
(3) Neuromuscular junction
(4) Cross-bridges
60. Which of the following statements is correct about excretion?
(1) Humans excrete 25-30 grams of urea per day
(2) Glucose and amino acid are reabsorbed passively in renal tubules
(3) Descending limb of loop of Henle is impermeable to water
(4) Kidneys reabsorb about 30% volume of glomerular filtrate
61. Identify the incorrect statement regarding genetic material of $\phi \times 174$ bacteriophage
(1) It is a polymer having ribose sugars
(2) Chargaff rule is not applicable to it
(3) It contains adenine, guanine, thymine, cytosine
(4) Two successive nucleotides are linked by phosphodiester bonds
62. Identify the incorrect statement regarding genetic code
(1) Code is degenerate
(2) Code is nearly universal
(3) Code is unambiguous and specific
(4) UUU codes for glycine
63. In prokaryotes, predominant site for control of gene expression is
(1) Elongation step
(2) Termination step
(3) Processing of hn RNA
(4) Initiation step of transcription
64. Corn borer is controlled by the following gene
(1) cry II Ab
(2) cry IAc
(3) cry II Ac
(4) cry I Ab
65. Total number of ATP's formed by all reduced coenzymes during oxidation of one glucose molecule
(1) 38
(2) 40
(3) 34
(4) 36
66. Dialysing unit (artificial kidney) contains a fluid which is almost same as blood plasma, except that it has:
(1) High levels of glucose
(2) High levels of urea
(3) No nitrogenous wastes
(4) High levels of creatinine
67. Within a normally functioning kidney, blood can be found in:
(1) the lumen of renal pelvis
(2) the vasa recta
(3) the Henle's loop
(4) the collecting ducts
68. Which of the following is devoid of muscle layer?
(1) Capillaries
(2) Arterioles
(3) Veins
(4) Arteries
69. The white fibres are chemically formed of
(1) Actin
(2) Collagen
(3) Myosin
(4) Elastin
70. Which of the following granulocytes arrive at the earliest at the site of infection?
(1) Eosinophils
(2) Basophils
(3) Neutrophils
(4) Monocytes
71. While isolating DNA from bacteria, which of the following enzymes is not used ?
(1) Lysozyme
(2) Ribonuclease
(3) Protease
(4) Deoxyribonuclease
72. In RNAi , mRNA is silenced using
(1) ssDNA
(2) dsDNA
(3) dsRNA
(4) ssRNA
73. Which of the following step in PCR is catalysed by Taq polymerase ?
(1) Denaturation of template DNA
(2) Annealing of primers to DNA templates
(3) Primer extension on template DNA
(4) All of these
74. Sonalika is a variety of
(1) Wheat
(2) Rice
(3) Millet
(4) Tobacco
75. Black rot of crucifers is caused by
(1) Bacteria
(2) Fungi
(3) Nematode
(4) Virus
76. A healthy human has, on an average, \qquad million RBCs per mm^{3} of blood.
(1) $3-3.5$ billion
(2) $2-2.5$ million
(3) 5-5.5 million
(4) $6000-8000$
77. The figure given below shows a small part of human lung where exchange of gases takes place. In which one of the options given below, the one-part $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D is correctly identified along with its function?

1) B : Red blood cell - transport of CO_{2} only
2) C : Arterial capillary - passes oxygen to tissues
3) A : alveolar cavity - main site of exchange of respiratory gases
4) D : Capillary wall - exchange of O_{2} and CO_{2} takes place here
78. The micelle formation is generally not needed for the absorption of:
(1) Fatty acids
(2) Vitamins A, D, E \& K
(3) Glycerol
(4) Amino acids
79. Brush border columnar epithelium is the lining of:
(1) Oesophagus
(2) Small intestine
(3) Stomach
(4) Proximal convoluted tubules
80. The function of typhlosole in earthworms is to:
(1) Secrete digestive juice
(2) Regulate the blood flow
(3) Emulsify the fatty foods
(4) Increase absorptive surface area of intestines
81. North Indian sugar variety is
(1) S. officinarum
(2) S. barberi
(3) Co 785
(4) Kalyansona
82. Methanogenic bacteria are not found in
(1) rumen of cattle
(2) gobar gas plant
(3) bottom of water-logged paddy fields
(4) activated sludge
83. Match the following list of bacteria and their commercially important products

Bacterium

Product
A) Aspergillus niger
i) Lactic acid
B) Acetobacter aceti
ii) Butyric acid
C) Clostridium
iii) Acetic acid
butylicum
D) Lactobacillus
iv) Citric acid

Choose the correct match

	A	B	C	D
(1)	ii	iii	iv	i
(2)	ii	iv	iii	i

(3) iv
(4) iv i
$\begin{array}{ll}\text { ii } & \text { i } \\ \text { iii } & \text { ii }\end{array}$
84. Which one of the following alcoholic drinks is produced without distillation?
(1) Wine
(2) Whisky
(3) Rum
(4) Brandy
85. Which one of the following statements is correct for secondary succession?
(1) It occurs on a deforested site
(2) It begins on a bare rock
(3) It is similar to primary succession except that it is relatively slow
(4) Occurs in newly created pond
86. Malpighian tubules in cockroaches:
(1) Are attached to gizzard
(2) Convert nitrogenous wastes into uric acid
(3) Lie at the junction of foregut and midgut
(4) Remain isolated from haemolymph
87. Match the columns:

Column - I		Column - II	
A.	Hyaline cartilage	i)	Intervertebral disc and pubic symphysis
B.	White-fibrous cartilage	ii)	Tip of nose
C.	Elastic cartilage	iii)	Foetal skeleton
(1)	$\mathrm{A}=$ (iii), $\mathrm{B}=($ (ii), $\mathrm{C}=$ (i)		
(2)	$\mathrm{A}=$ (ii), $\mathrm{B}=(\mathrm{iii}), \mathrm{C}=$ (i)		
(3) $\mathrm{A}=$ (iii), $\mathrm{B}=(\mathrm{i}), \mathrm{C}=($ ii)			
(4) $\mathrm{A}=(\mathrm{i}), \mathrm{B}=($ ii), $\mathrm{C}=$ (iii)			

88. True about Ascidia, Branchiostoma, Doliolum, Salpa is
(1) All are non-chordates except Branchiostoma
(2) All are urochordates except Branchiostoma
(3) All are chordates except Branchiostoma
(4) All are protochordates except Branchiostoma
89. Which among these is the correct combination of aquatic mammals?
(1) Seals, Dolphins, Sharks
(2) Dolphins, Seals, Trygon
(3) Whales, Dolphins, Seals
(4) Trygon, Whales, Seals
90. Meandrina is:
(1) the Brain coral
(2) an arthropod
(3) the sea anemone
(4) a hemichordate
91. The following diagram indicates the energy levels of a certain atom, where the system moves from 4E level to E , a photon of wavelength λ_{1} is emitted. The wavelength of photon produced during its transition from $\frac{7}{3} E$ level to E is λ_{2}. The ratio $\frac{\lambda_{1}}{\lambda_{2}}$ will be

(1) $\frac{9}{4}$
(2) $\frac{4}{9}$
(3) $\frac{3}{2}$
(4) $\frac{7}{3}$
92. All electron ejected from a surface by incident of wavelength 200 nm can be stopped before travelling 1 meter in the direction of a uniform electric field of $4 N C^{-1}$ the work function of the surface is
(1) 4 eV
(2) 5.2 eV
(3) 3 eV
(4) 2.2 eV
93. The de Broglie wavelength of an electron moving with a velocity $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is equal to that of a photon. The ratio of the kinetic energy of the electron to the energy of the photon is
(1) $\frac{1}{4}$
(2) $\frac{1}{2}$
(3) 2
(4) 4
94. A heavy nucleus at rest breaks into two fragments which fly off with velocities in the ratio $27: 1$. The ratio of radii of the fragments is
(1) $1: 3 \sqrt{3}$
(2) $\sqrt{3}: 1$
(3) $1: 3$
(4) $3 \sqrt{3}: 1$
95. Figure shows the transfer characteristics of a base biased CE transistor. Which of the following statements is FALSE?

(1) At $V_{i}=1 V$, it can be used as an amplifier
(2) At $V_{i}=0.5 \mathrm{~V}$, it can be used as a switch turned off.
(3) At $V_{i}=2.5 \mathrm{~V}$, it can be used as a switch turned on
(4) At $V_{i}=0.4 V$, transistor is in active state
96. To produce high output (1) at R , we must have input x and y respectively

(1) $x=0, y=1$
(2) $\mathrm{x}=1, \mathrm{y}=1$
(3) $\mathrm{x}=1, \mathrm{y}=0$
(4) $x=0, y=0$
97. The breakdown in a reverse biased p-n junction diode is more likely to occur due to
(a) large velocity of the minority charge carriers if the doping concentration is small
(b) large velocity of the minority charge carriers if the doping concentration is large
(c) strong electric filed in the depletion region if the doping concentration is small
(d) strong electric filed in the depletion region if the doping concentration is large
(1) a, d
(2) c only
(3) b only
(4) b, c
98. From the figure shown here, establish a relation between μ_{1}, μ_{2} and μ_{3}

(1) $\mu_{1}<\mu_{2}<\mu_{3}$
(2) $\mu_{3}<\mu_{2} ; \mu_{3}=\mu_{1}$
(3) $\mu_{3}>\mu_{2} ; \mu_{3}=\mu_{1}$
(4) $\mu_{1}>\mu_{2}>\mu_{3}$
99. One face of a prism with a refractive angle of 30° is coated with silver. A ray incident on another face at an angle of 45° is refracted at first surface, reflected from the silver coated face and retraces its path. What is the refractive index of the prism?

(1) $\sqrt{2}$
(2) $\sqrt{3}$
(3) $\frac{3}{2}$
(4) $\frac{4}{3}$
100. The magnifying power of an astronomical telescope in the normal adjustment position is 100. The distance between the objective and the eye piece is 101 cm . Find the focal length of the objective lens
(1) 1 cm
(2) 100 cm
(3) 50 cm
(4) 51 cm
101. In young's double slit experiment with pin holes, the interference pattern on the screen, placed perpendicular to line of pin holes, is
(1) Parabolic
(2) Straight
(3) Hyperbolic
(4) Circular
102. A screen is place 50 cm from a single slit, which is illuminated with $6000{ }^{\circ} \mathrm{A}$ light. If the distance between the first and third minima in the diffraction pattern is 3 mm , the width of the slit is
(1) 0.1 mm
(2) 0.2 mm
(3) 0.3 mm
(4) 0.4 mm
103. Two wires of resistances R_{1} and R_{2} have temperature coefficient of resistance α_{1} and α_{2} respectively. These are joined in series the effective temperature coefficient of resistance is
(1) $\frac{\alpha_{1}+\alpha_{2}}{2}$
(2) $\sqrt{\alpha_{1} \alpha_{2}}$
(3) $\frac{\alpha_{1} R_{1}+\alpha_{2} R_{2}}{R_{1}+R_{2}}$
(4) $\frac{\sqrt{R_{1} R_{2} \alpha_{1} \alpha_{2}}}{\sqrt{R_{1}^{2}+R_{2}^{2}}}$
104. A potentiometer wire has length 4 m and resistance 6Ω. The resistance that must be connected in series with the wire and a battery of emf 4 V so as to get a potential gradient 5 mV per cm on the wire is
(1) 6Ω
(2) 12Ω
(3) 18Ω
(4) 24Ω
105. If a number of forces act on a body and the body is in static or dynamic equilibrium, then
(1) Work done by any individual force must be zero
(2) Net work done by all the forces is +ve
(3) Net work done by all the forces is -ve
(4) Net work done by all the forces is zero
106. The velocities of two particles A and B of same mass are $\vec{V}_{A}=a \hat{i}$ and $\vec{V}_{B}=b \hat{i}$ where a and b are constants. The acceleration of particle A is $(2 a \hat{i}+4 b \hat{i})$ and acceleration of particle B is $(a \hat{i}-b \hat{i})\left(\operatorname{in} m / s^{2}\right)$. The path of the centre of mass of two particles is
(1) Straight line
(2) Parabola
(3) Ellipse
(4) Circle
107. A small object of mass m starts from rest at the position shown and slides along the frictionless loop-the-loop track of radius R . What is the smallest value of y such that the object will slide without losing contact with the track?

(1) $\frac{R}{2}$
(2) R
(3) $\frac{R}{4}$
(4) $\frac{3 R}{4}$
108. The frequency of vibration of a string is given by $v=\frac{P}{2 l}\left[\frac{F}{m}\right]^{1 / 2}$ here p is the number of segments in which the string is divided, F is the tension in the string and l is its length. The dimensional formula for m is
(1) $\left[M^{0} L^{0} T^{0}\right]$
(2) $\left[M L^{-1} T^{0}\right]$
(3) $\left[M L^{0} T^{-1}\right]$
(4) $\left[M^{0} L T^{-1}\right]$
109. An object moving with a speed of $6.25 \mathrm{~m} / \mathrm{s}$, is retarded by $2.5 \sqrt{v}$. Where v is instantaneous speed. The time taken by the object to come to rest, would be
(1) 1 s
(2) 2 s
(3) 4 s
(4) 8 s
110. A fixed pulley of radius 20 cm and moment of inertia $0.32 \mathrm{~kg} . \mathrm{m}^{2}$ about its axle has a massless cord wrapped around its rim. A mass M of 2 kg is attached to the end of the cord. The pulley can rotate about its axis without any friction. The acceleration of the mass M is (Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) $1 \mathrm{~m} / \mathrm{s}^{2}$
(2) $3 m / s^{2}$
(3) $2 m / s^{2}$
(4) $4 m / s^{2}$
111. A particle thrown at an angle of 30° with the horizontal has a range R_{1} and maximum vertical height H_{1}. The another particle with double the mass when thrown from the same point with the same velocity at an angle of 30° with the vertical has a range R_{2} and maximum vertical height H_{2}. Choose the correct relation
(1) $R_{1}=R_{2} ; H_{1}=3 H_{2}$
(2) $R_{1}=R_{2} ; H_{1}=\frac{H_{2}}{3}$
(3) $R_{1}=\frac{R_{2}}{3} ; H_{1}=H_{2}$
(4) $R_{1}=3 R_{2} ; H_{1}=H_{2}$
112. The system is pushed by a force F as shown in figure. All surfaces are smooth except between B and C . Friction coefficient between B and C is μ. Minimum value of F to prevent block B from downward slipping is

(1) $\left(\frac{3}{2 \mu}\right) m g$
(2) $\left(\frac{5}{2 \mu}\right) m g$
(3) $\left(\frac{5}{2}\right) \mu m g$
(4) $\left(\frac{3}{2}\right) \mu m g$
113. A boy is hanging over a pulley inside a car through a string. The second end of the straight is in the hand of a person standing in the car. The car is moving with constant acceleration ' a ' directed horizontally as shown in figure. Other end of the straight is pulled with constant acceleration ' a ' (relative to car) vertically. The tension in the string is equal to

(1) $m \sqrt{g^{2}+a^{2}}$
(2) $m \sqrt{g^{2}+a^{2}}-m a$
(3) $m \sqrt{g^{2}+a^{2}}+m a$
(4) $m(g+a)$
114. A ballet dancer spins about a vertical axis at 60 rpm with his arms closed. Now he stretches his arms such that M.I increases by 50%. The new speed of revolution is.
(1) 80 rpm
(2) 40 rpm
(3) 90 rpm
(4) 30 rpm
115. The escape velocity from a planet is v_{e}. A tunnel is dug along the diameter of the planet and a small body dropped into it. The speed of the body at the centre of the planet will be
(1) $\frac{v_{e}}{\sqrt{2}}$
(2) $\frac{v_{e}}{2}$
(3) v_{e}
(4) $2 v_{e}$
116. The height at which the weight of a body becomes $1 / 9^{\text {th }}$ its weight on the surface of earth (radius of earth is R)
(1) $\mathrm{h}=3 \mathrm{R}$
(2) $\mathrm{h}=\mathrm{R}$
(3) $h=\frac{R}{2}$
(4) $h=2 R$
117. Steam at $100^{\circ} \mathrm{C}$ is passed into 22 g of water at $20^{\circ} \mathrm{C}$. The mass of water that will be present when the water acquires a temperature of $90^{\circ} \mathrm{C}$ (Latent heat of steam is $540 \mathrm{cal} / \mathrm{g}$) is
(1) 24.8 g
(2) 24 g
(3) 36.6 g
(4) 2.8 g
118. A gaseous mixture consists of 16 g of helium and 16 g of oxygen. The ratio $\left(C_{p} / C_{v}\right)$ of the mixture is
(1) 1.4
(2) 1.54
(3) 1.59
(4) 1.62
119. A black body has maximum wavelength λ_{m} at 2000 K . Its corresponding wavelength at 3000 K will be
(1) $\frac{16}{81} \lambda_{m}$
(2) $\frac{81}{16} \lambda_{m}$
(3) $\frac{3}{2} \lambda_{m}$
(4) $\frac{2}{3} \lambda_{m}$
120. The $\mathrm{P}-\mathrm{V}$ diagram of 2 g of helium gas for a certain process $A \rightarrow B$ is shown in the figure. What is the work done by the gas during the process $A \rightarrow B$?

(1) $1.5 P_{0} V_{0}$
(2) $6 P_{0} V_{0}$
(3) $4.5 P_{0} V_{0}$
(4) $2 P_{0} V_{0}$
121. A refrigerator placed in a room at 300 K has inside temperature 200 K . How many calories of heat shall be delivered to the room for each 2 Kcal of energy consumed by the refrigerator ideally?
(1) 4 Kcal
(2) 2 Kcal
(3) 8 Kcal
(4) 6 Kcal
122. When the stress is numerically equal to half of the young's modulus, the final length of the wire if the initial length is L
(1) 3 L
(2) 2 L
(3) 1.5 L
(4) 4.5 L
123. When a ball is released from rest in a very long column of viscous liquid, its downward acceleration is ' a ' (just after release). Then its acceleration when it has acquired two third of the maximum velocity
(1) $\frac{a}{3}$
(3) $\frac{2 a}{3}$
(3) $\frac{a}{6}$
(4) $\frac{2 a}{5}$
124. The potential energy of a particle of mass 1 kg in motion along the x -axis is given by $U=4(1-\cos 2 x) J$ Here : x is in metres. The period of small oscillations (in sec) is
(1) 2π
(2) π
(3) $\frac{\pi}{2}$
(4) $\sqrt{2} x$
125. A string clamped at both ends is vibrating. At the moment the string looks flat, the instantaneous transverse velocity of points along the string, excluding its end-points, must be
(1) zero everywhere
(2) dependent on the location along the string
(3) non zero everywhere
(4) non zero and in the same direction everywhere
126. An air craft moving horizontally at an altitude with a speed equal to half of velocity of sound, produces a sound of frequency 3 K Hz . What is apparent frequency heard by an observer on the ground at the instant when the air craft is moving over the head of him
(1) 2.1 K Hz
(2) 3 K Hz
(3) 3.5 K Hz
(4) 4 K Hz
127. A long solenoid has 1000 turns per metre and carries a current of 1 a . It has a soft iron core of $\mu_{r}=1000$. The core is heated beyond the Curie temperature, T_{c}.
(1) The H field in the solenoid is (nearly) unchanged but the B field decreases drastically
(2) The H and B fields in the solenoid are nearly unchanged
(3) The magnetisation in the core reverses direction
(4) The magnetisation in the core diminishes by a factor of about 10
128.

When S_{1} is closed and S_{2} is open $V_{L}=V_{R}=V_{C}=10 \mathrm{~V}$. What will be the value of V_{C} if S_{1} opened and S_{2} is closed?
(1) 10
(2) $10 \sqrt{2}$
(3) $\frac{10}{\sqrt{2}}$
(4) $15 \sqrt{2}$
129. A conducting circular loop of radius a and resistance R is kept on horizontal plane. A vertical time varying magnetic field $B=2 t$ is switched on at time $t=0$. Then
(1) power generated in the coil at any time is constant
(2) flow of charge per unit time from any section of the coil is constant
(3) total charge passed through any section

$$
\text { between time } \mathrm{t}=0 \text { to } t=2 s,\left(\frac{4 \pi a^{2}}{R}\right)
$$

(4) all of the above
130. Consider a non spherical conductor shown in the figure which is given a certain amount of positive charge. The charge distributes itself on the surface such that the charge densities are σ_{1}, σ_{2} and σ_{3} at the region 1,2 and 3 respectively. Then

(1) $\sigma_{1}>\sigma_{2}>\sigma_{3}$
(2) $\sigma_{2}>\sigma_{3}>\sigma_{1}$
(3) $\sigma_{3}>\sigma_{1}>\sigma_{2}$
(4) $\sigma_{2}>\sigma_{1}>\sigma_{3}$
131. Two equal point charges q are fixed at $x=-a$ and $x=+a$ on x-axis. Another point charge Q is placed at the origin. The change in electrical potential energy of Q, when it is displaced by a small amount x along x -axis, is approximately proportional to
(1) x
(2) x^{2}
(3) x^{3}
(4) $\frac{1}{x}$
132. The average electric field of electromagnetic waves in certain region of free space is $9 \times 10^{-4} \mathrm{NC}^{-1}$. Then, the average magnetic field in the same region is of the order of
(1) $27 \times 10^{-4} \mathrm{~T}$
(2) $3 \times 10^{-12} \mathrm{~T}$
(3) $\left(\frac{1}{3}\right) \times 10^{-12} T$
(4) $3 \times 10^{12} T$
133. A parallel plate capacitor is charged from a cell then isolated from it. The separation between it's plates is now increased then the force of attraction between the plates
(1) will decrease
(2) will increase
(3) will increase or decrease depending on charge
(4) will remains same
134. The graph showing the variation of the magnetic field strength (B) with distance (r) from a long current carrying conductor is
(1)

(2)

(3)

(4)

135. The instantaneous acceleration of an electron in a magnetic field $\bar{B}=2 \bar{i}+3 \bar{j}+4 \bar{k}$ is $\bar{a}=x \bar{i}+\bar{j}-\bar{k}$. The magnitude of acceleration is
(1) 0.5 units
(2) 1.5 units
(3) $\sqrt{0.5}$ units
(4) $\sqrt{2.5}$ units
136. Total number of nodes, the planar nodes and the radial nodes in case of 4 f orbital respectively are
(1) $4,3,2$
(2) $3,3,0$
(3) $3,2,1$
(4) $4,2,1$
137. A gaseous compound of nitrogen and hydrogen contains 12.5% (by mass) of hydrogen. The density of the compound relative to that of hydrogen is 16 . The molecular formula of the compound is
(1) $\mathrm{N}_{2} \mathrm{H}$
(2) NH_{2}
(3) $\mathrm{N}_{2} \mathrm{H}_{4}$
(4) $\mathrm{N}_{2} \mathrm{H}_{6}$
138. Equal volumes of two solutions with pH values $2 \& 6$ are mixed together. pH of resulting solution is:
(1) 4
(2) 6.3
(3) 2.3
(4) 7
139. Which of the given statements incorrect
(1) Keratin \& Myosin are fibrous proteins
(2) Deficiency of vitamin C causes scurvy
(3) Nucleoside contains pentose sugar + Purine or pyrimidine base + phosphate
(4) Glucosazone formation from glucose requires 3 moles of phenyl hydrazine
140. For a hypothetical reaction, the activation energy is zero. What is the rate constant at 400 K if at 300 K its value is $2.5 \times 10^{5} \mathrm{sec}^{-1}$?
(1) $5.0 \times 10^{5} \mathrm{sec}^{-1}$
(2) $1.0 \times 10^{5} \mathrm{sec}^{-1}$
(3) $3.0 \times 10^{6} \mathrm{sec}^{-1}$
(4) $2.5 \times 10^{5} \mathrm{sec}^{-1}$
141. Volume of $98 \%(\mathrm{w} / \mathrm{w}) \mathrm{H}_{2} \mathrm{SO}_{4}$ of specific gravity 1.8 required to prepare one litre of 1.8 M solution is
(1) 10 ml
(2) 200 ml
(3) 100 ml
(4) 500 ml
142. Which of the following can act as both Lewis acid and Lewis base
(1) SO_{3}
(2) SF_{4}
(3) CO
(4) SiF_{6}^{-2}
143. The solubility product of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $8.64 \times 10^{-16} \mathrm{M}$. The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in a buffer solution of $\mathrm{pH}=10$ is
(1) $3.5 \times 10^{-10} \mathrm{M}$
(2) $8.64 \times 10^{-8} \mathrm{M}$
(3) $2.2 \times 10^{-6} \mathrm{M}$
(4) $8.64 \times 10^{-2} \mathrm{M}$
144. $\mathrm{C}_{2} \mathrm{O}^{-2}+\mathrm{MnO}_{4}{ }^{-1} \rightarrow \mathrm{Mn}^{+2}+\mathrm{CO}_{2}$, this reaction takes place in :
(1) Basic medium
(2) Neutral medium
(3) Acidic medium
(4) Strong alkaline medium
145. In a reversible reaction $K_{c}<K_{p}$ and $\Delta H=+40 \mathrm{~K} . \mathrm{Cal} /$ mole. Forward reaction is favoured by
(1) Increasing both pressure \& temperature
(2) Decreasing both pressure \& temperature
(3) Decreasing pressure \& increasing temperature
(4) Increasing pressure \& decreasing temperature
146. Oxidation number of potassium in $\mathrm{K}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}_{2}$ and KO_{2}, respectively is:
(1) $+1,+2$ and +4
(2) $+1,+4$ and +2
(3) $+2,+1$ and $+\frac{1}{2}$
(4) $+1,+1$ and +1
147. Which among the following has highest boiling point?
(1) 0.5 M Glucose (aq)
(2) $0.5 \mathrm{M} \mathrm{NaCl}(\mathrm{aq})$
(3) $0.5 \mathrm{M} \mathrm{CaCl}_{2}(\mathrm{aq})$
(4) $0.5 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})$
148. Given that the standard potential $\left(\mathrm{E}^{\circ}\right)$ of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ are 0.34 V and 0.522 V respectively, the E^{o} of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$ is:
(1) 0.182 V
(2) -0.158 V
(3) -0.182 V
(4) +0.158 V
149. For the reaction $P(l) \rightarrow Q(g)$
$\Delta U=2.1 \mathrm{Kcal} \& \Delta S=15 \mathrm{calK}^{-1}$ at 300 K.
Hence ΔG is Kcal is:
(1) -1.8
(2) 2.1
(3) -2.5
(4) 2.9
150. The bond order and magnetic characteristics of CN^{-}are :
(1) 3, diamagnetic
(2) $2 \frac{1}{2}$, diamagnetic
(3) $2 \frac{1}{2}$, paramagnetic
(4) 3, paramagnetic
151. Which among the following is incorrect statement?
(1) The refining method used when the metal and the impurities have low and high melting temperatures respectively is liquation
(2) Wrought iron is the purest form of iron
(3) Zone refining is preferred if impurities are more soluble in molten metal than in solid metal
(4) The leaching agent used in the concentration of Bauxite is $\mathrm{H}_{2} \mathrm{SO}_{4}$
152. The flocculation value of HCl for arsenic sulphide sol is 30 milli $\mathrm{mol} \mathrm{L}^{-1}$. If $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used for the flocculation of arsenic sulphide, then the amount in grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required for 500 ml in the above purpose is :
(1) 1.65 g
(2) 0.735 g
(3) 4.53 g
(4) 0.35 g
153. Which among the following is correct statement?
(1) Drugs which bind to the active site of enzyme are called allosteric drugs
(2) A chemical messenger gives message to the cell by entering the cell
(3) Drugs which compete with natural substrate on active site are called competitive inhibitors
(4) Morphine can be used as analgesic without causing addiction.
154. A vessel of volume 1 litre contains 1 mole of nitrogen gas at a temperature 12.18 K . The pressure of the gaseous mixture, when 50% of the molecules are dissociated into nitrogen atoms at the same temperature is:
(1) 4.5 atm
(2) 1.5 atm
(3) 3.8 atm
(4) 2.9 atm
155. Which among the following is a condensation polymer?
(1) Teflon
(2) Buna-S
(3) Nylon-6
(4) Polythene
156. In a sample of FeO , when $12 \mathrm{Fe}^{+2}$ ions are replaced with electrically balanced number of Fe^{+3} ions, then the composition of FeO is:
(1) $\mathrm{Fe}_{0.88} \mathrm{O}$
(2) $\mathrm{Fe}_{0.96} \mathrm{O}$
(3) $\mathrm{Fe}_{0.82} \mathrm{O}$
(4) $\mathrm{Fe}_{0.79} \mathrm{O}$
157. A disaccharide consisting of two α-D-glucose units in which C_{1} of one glucose is linked to C_{4} of another α-D-glucose unit is:
(1) Maltose
(2) Sucrose
(3) Lactose
(4) Celulose
158. The Z-isomer among the following are

(1) I, II
(2) II, III
(3) III, IV
(4) I, IV
159. Arrange the following compounds in order of dehydrohalogenation $\left(E_{1}\right)$ reaction
A)

B)

C)

D)

(1) C $>$ B $>$ D $>$ A
(2) $\mathrm{C}>$ D $>$ B $>$ A
(3) B $>$ C $>$ D $>$ A
(4) A $>$ B $>$ C $>$ D
160. Which of the following reactions do not result in the formation of new $\mathrm{C}-\mathrm{C}$ bond
(1) Fittig reaction
(2) Wurtz reaction
(3) Wurtz - Fittig reaction
(4) Williamson's synthesis
161. Number of $\mathrm{S}-\mathrm{O}$ bond in $\mathrm{S}_{2} \mathrm{O}_{8}^{-2}$ and number of $\mathrm{S}-\mathrm{S}$ bond in rhombic sulphur are respectively
(1) 8,8
(2) 6,8
(3) 2,4
(4) 4,2
162.

$$
\xrightarrow[\mathrm{Sn} / \mathrm{HCl}]{\mathrm{Zn}-\mathrm{Hg} / \mathrm{Concl} \mathrm{HCl}} \mathrm{Cl} \xrightarrow[\mathrm{H}_{3} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}]{\mathrm{NaNO}_{2}+\mathrm{HCl} / 273 \mathrm{~K}} \mathrm{D}
$$

IUPAC name of ' D ' is
(1) 3 - hydroxyl benzaldehyde
(2) Benzene carbaldehyde
(3) Methyl benzene
(4) Benzene 1, 3 diol
163. Incorrect combination among hydrides of Halogens is
(1) Acidic nature : $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
(2) Reducing nature : $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>$ HF
(3) Boiling points: $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
(4) Volatility : $\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}>\mathrm{HF}$
164. XeO_{3} is formed on hydrolysis of
A) XeF_{2}
B) XeF_{4}
C) XeF_{6}

1) only A, B
2) only A, C
3) only B, C
4) only A, B, C
165.

Correct order of electron donating power of nitrogen is
(1) a $>$ b $>$ c
(2) $\mathrm{c}>\mathrm{b}>\mathrm{a}$
(3) b $>c>a$
(4) b $>a>c$
166. 35.5 g of organic compound is acidified with HNO_{3}. On addition of $\mathrm{AgNO}_{3}, 14.35 \mathrm{~g}$ of AgCl is precipitated. Percentage of chlorine in sample is
(1) 20%
(2) 10%
(3) 40%
(4) 5%
167. Statement-I : Down the group solubility of IIA group hydroxides increases
Statement-II : Down the group in IIA group hydroxides, decrease in lattice enthalpy is more than decrease in hydration enthalpy
(1) I and II are true
(2) I and II are false
(3) I is true, II is false
(4) I is false, II is true
168. $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ cannot be distinguished by
(1) Tollens Test
(2) Benedicts Test
(3) lodoform Test
(4) Schiff's Test
169. Number of carboxylic acids and esters (strucrtural only) possible with the formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ are
(1) 6
(2) 4
(3) 5
(4) 3
170. When $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is gently heated, an oxide of nitrogen is formed, the oxidation state of nitrogen in this oxide is
(1) +4
(2) +2
(3) +3
(4) +1
171. Which of the following ions is most stable
(1) Sn^{+2}
(2) Ge^{+2}
(3) Si^{+2}
(4) Pb^{+2}
172. The IUPAC name of
 is
(1) Tricyclo propylamine
(2) N, N - dicyclopropylamine
(3) N, N dicyclo propyl cyclopropanamine
(4) $\mathrm{N}, \mathrm{N}, \mathrm{N}$ tricyclo propanamine
173. Which of the following metal is having least melting point ?
(1) Na
(2) K
(3) Rb
(4) Cs
174. According to crystal field theory, the $\mathrm{M}-\mathrm{L}$ bond in a complex is
(1) partially covalent
(2) purely ionic
(3) purely covalent
(4) purely co-ordinate
175. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN} \xrightarrow[\text { hydrolysis }]{\text { Partial }} \mathrm{A} \xrightarrow{\mathrm{Br} / \mathrm{NaOH}(\mathrm{NaOBr})} \mathrm{B}$.

Which of the following cannot be used as an acylating agent to B
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) $\mathrm{CH}_{3} \mathrm{COCl}$
(3) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(4) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
176. Correct order of radius of elements $\mathrm{C}, \mathrm{O}, \mathrm{F}$,
Cl, Br is
Sri Chaitanya
(1) $\mathrm{Br}<\mathrm{Cl}<\mathrm{C}<\mathrm{O}<\mathrm{F}$
(2) $\mathrm{Br}>\mathrm{Cl}>\mathrm{C}>\mathrm{O}>\mathrm{F}$
(3) $\mathrm{Cl}<\mathrm{C}<\mathrm{O}<$ F $<\mathrm{Br}$
(4) $\mathrm{C}>$ F $>\mathrm{O}>\mathrm{Br}>\mathrm{Cl}$
177. The electronic configuration of bivalent Europium and trivalent Cerium respectively is $[\mathrm{Z}$ for $\mathrm{Xe}=54, \mathrm{Ce}=58, \mathrm{Eu}=63$]
(1) $[\mathrm{Xe}] 4 \mathrm{f}^{7},[\mathrm{Xe}] 4 \mathrm{f}^{1}$
(2) $[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{1}$
(3) $[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{1} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
(4) $[\mathrm{Xe}] 4 \mathrm{f}^{7},[\mathrm{Xe}] 4 \mathrm{f}^{1} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
178.

. Compound (P) is :-
(1)

(2)

(3)

(4)

179. Wrong match is
(1) Borax undergoes anionic hydrolysis
(2) Orthoboric acid Lewis acid
(3) Solid $\mathrm{CO}_{2} \ldots$. Refrigerant
(4) Keiselghur Crystalline form of silica
180. Which of the following water sample is more polluted?
(1) $\mathrm{DO}-4 \mathrm{ppm}$, BOD-4ppm
(2) $\mathrm{DO}-2 \mathrm{ppm}$, BOD- 150 ppm
(3) $\mathrm{DO}-2 \mathrm{ppm}, \mathrm{BOD}-5 \mathrm{ppm}$
(4) $\mathrm{DO}-3 \mathrm{ppm}, \mathrm{BOD}-2 \mathrm{ppm}$

ВОТ : $1-5,11-15,21-25,31-35,41-45,51-55,61-65,71-75,81-85$
ZOO : 6-10, 16 - 20, 26 - 30, 36 - 40, 46 - 50, 56 - 60, 66 - 70, 76-80, 86 - 90

BIOLOGY

		2)	4	3)	3	4)	1					7)	1	8)	2	9)	2	10)	2
11)	1	12)	3	13)	4	14)	1	15)	4	16)	4	17)	4	18)	3	19)	1	20)	1
21)	1	22)	3	23)	3	24)	1	25)	4	26)	4	27)	3	28)	1	29)	4	30)	3
31)	1	32)	2	33)	1	34)	4	35)	2	36)	1	37)	1	38)	3	39)	2	40)	4
41)	3	42)	4	43)	2	44)	3	45)	2	46)	2	47)	1	48)	2	49)	1	50)	3
51)	3	52)	4	53)	1	54)	3	55)	4	56)	1	57)	3	58)	1	59)	3	60)	1
61)	1	62)	4	63)	4	64)	4	65)	3	66)	3	67)	2	68)	1	69)	2	70)	3
71)	4	72)	3	73)	3	74)	1	75)	1	76)	3	77)	3	78)	4	79)	2	80)	4
81)	2	82)	4	83)	3	84)	1	85)	1	86)	2	87)	3	88)	2	89)	3	90)	1

PHYSICS

91$)$	$\mathbf{2}$	$92)$	$\mathbf{4}$	$93)$	$\mathbf{1}$	$94)$	$\mathbf{3}$	$95)$	$\mathbf{4}$	$96)$	$\mathbf{3}$	$97)$	$\mathbf{1}$	$98)$	$\mathbf{2}$	$99)$	$\mathbf{1}$	$100)$	$\mathbf{2}$
101$)$	$\mathbf{4}$	$102)$	$\mathbf{2}$	$103)$	$\mathbf{3}$	$104)$	$\mathbf{1}$	$105)$	$\mathbf{4}$	$106)$	$\mathbf{1}$	$107)$	$\mathbf{1}$	$108)$	$\mathbf{2}$	$109)$	$\mathbf{2}$	$110)$	$\mathbf{3}$
111$)$	$\mathbf{2}$	$112)$	$\mathbf{2}$	$113)$	$\mathbf{3}$	$114)$	$\mathbf{2}$	$115)$	$\mathbf{1}$	$116)$	$\mathbf{4}$	$117)$	$\mathbf{1}$	$118)$	$\mathbf{4}$	$119)$	$\mathbf{4}$	$120)$	$\mathbf{1}$
121$)$	$\mathbf{4}$	$122)$	$\mathbf{3}$	$123)$	$\mathbf{1}$	$124)$	$\mathbf{3}$	$125)$	$\mathbf{2}$	$126)$	$\mathbf{4}$	$127)$	$\mathbf{1}$	$128)$	$\mathbf{3}$	$129)$	$\mathbf{4}$	$130)$	$\mathbf{4}$
131$)$	$\mathbf{2}$	$132)$	$\mathbf{2}$	$133)$	$\mathbf{4}$	$134)$	$\mathbf{3}$	$135)$	$\mathbf{2}$										

CHEMISTRY

136$)$	$\mathbf{2}$	$137)$	$\mathbf{3}$	$138)$	$\mathbf{3}$	$139)$	$\mathbf{3}$	$140)$	$\mathbf{4}$	$141)$	$\mathbf{3}$	$142)$	$\mathbf{2}$	$143)$	$\mathbf{2}$	$144)$	$\mathbf{3}$	$145)$	$\mathbf{3}$
146$)$	$\mathbf{4}$	$147)$	$\mathbf{4}$	$148)$	$\mathbf{4}$	$149)$	$\mathbf{1}$	150	$\mathbf{1}$	$151)$	$\mathbf{4}$	$152)$	$\mathbf{2}$	$153)$	$\mathbf{3}$	$154)$	$\mathbf{2}$	$155)$	$\mathbf{3}$
156$)$	$\mathbf{2}$	$157)$	$\mathbf{1}$	$158)$	$\mathbf{2}$	$159)$	$\mathbf{1}$	$160)$	$\mathbf{4}$	$161)$	$\mathbf{1}$	162	$\mathbf{3}$	$163)$	$\mathbf{1}$	$164)$	$\mathbf{3}$	$165)$	$\mathbf{3}$
166$)$	$\mathbf{2}$	$167)$	$\mathbf{1}$	$168)$	$\mathbf{3}$	$169)$	$\mathbf{1}$	170	$\mathbf{4}$	$171)$	$\mathbf{4}$	$172)$	$\mathbf{3}$	$173)$	$\mathbf{4}$	$174)$	$\mathbf{2}$	$175)$	$\mathbf{1}$
176$)$	$\mathbf{2}$	$177)$	$\mathbf{1}$	$178)$	$\mathbf{4}$	$179)$	$\mathbf{4}$	$180)$	$\mathbf{2}$										

PHYSICS SOLUTIONS

91. Transition from (4E to E)

Energy of photon $4 E-E=\frac{h c}{\lambda_{1}} \quad$ thus $\lambda_{1}=\frac{h c}{3 E}$
Transition from $\left(\frac{7}{3} E-E\right) ; \quad \frac{7}{3} E-E=\frac{h c}{\lambda_{2}} \quad$ thus $\lambda_{2}=\frac{3 h c}{4 E}$
Equation (1) \& (2) $\frac{\lambda_{1}}{\lambda_{2}}=\frac{4}{9}$
92. $E=\frac{12400}{\lambda}=6.2 \mathrm{eV}$

KE of electron $=e V=e(E \times d)=e(4 \times 1)=4 e V$
Work function $=\mathrm{E}-\mathrm{W}=2.2 \mathrm{eV}$
93. $\lambda_{c}=\lambda_{p}=\lambda$
$\frac{E_{e}}{E_{p h}}=\frac{\frac{1}{2} m_{e} v_{e}^{2}}{\frac{h c}{\lambda_{p}}} \quad\left(\therefore \lambda_{e}=\frac{h}{m_{e} v_{e}}\right.$
$\frac{\frac{1}{2}\left(\frac{h}{\lambda_{e} v_{e}}\right) v_{e}^{2}}{\frac{h c}{\lambda_{p}}}=\frac{v_{e}}{2 c} \quad\left\{\therefore \lambda_{e}=\lambda_{p}=\lambda\right\}=\frac{1.5 \times 10^{8}}{2 \times 3 \times 10^{8}}=\frac{1}{4}$
94. $m_{1} v_{1}=m_{2} v_{2} \Rightarrow r_{1}^{3} v_{1}=r_{2}^{3} v_{2}$
95. Conceptual
96.

$R=\overline{(\bar{x}+y)+(\bar{x}+y)}=\overline{\bar{x}+y}=x \cdot \bar{y}$
$R=x \cdot \bar{y}$ for $\mathrm{R}=1 \Rightarrow \mathrm{x}=1 \& \mathrm{y}=0$
97. Conceptual
98. For second surface, $\frac{\mu_{2}}{v}-\frac{\mu_{3}}{\infty}=\frac{\mu_{2}-\mu_{3}}{+R} \Rightarrow v=\frac{\mu_{2} R}{\mu_{2}-\mu_{3}}$ for v positive $\mu_{2}>\mu_{3}$ and
for first s $\mu_{1}=\mu_{3}$
99. Given $A=30^{\circ}, i_{1}=45^{\circ}$ and $r_{2}=0$

Since, $r_{1}+r_{2}=A \quad \therefore r_{1}=A=30^{\circ}$
Now refractive index of the prism, $\mu=\frac{\sin i_{1}}{\sin r_{1}}=\frac{\sin 45^{0}}{\sin 30^{0}}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}=\sqrt{2}$
100. $\frac{f_{0}}{f_{e}}=100 ; \quad \quad f_{0}=100 f_{e}$

$$
f_{0}+f_{e}=101 \Rightarrow 100 f_{e}+f_{e}=101 ; f_{e}=1 \mathrm{~cm}, f_{0}=100 \mathrm{~cm}
$$

101. Conceptual
102. For minima $y=(n \lambda) \frac{D}{a}$
$\left(y_{3}-y_{1}\right)=(3-1) \lambda\left(\frac{D}{a}\right)=3 \mathrm{~mm} \quad \mathrm{a}=0.2 \mathrm{~mm}$
103. $\Delta R_{e q}=\Delta R_{1}+\Delta R_{2}$
$R_{e q} \alpha_{e q} \Delta T=R_{1} \alpha_{1} \Delta T+R_{2} \alpha_{2} \Delta T \Rightarrow \alpha_{e q}=\frac{R_{1} \alpha_{1}+R_{2} \alpha_{2}}{R_{1}+R_{2}}$
104. $L_{A B}=4 m \quad R_{A B}=6 \Omega \quad \mathrm{E}=4 \mathrm{~V}$
$x=\left(\frac{E}{R+R_{s}}\right) \frac{R}{L} \Rightarrow \frac{5 \times 10^{-3}}{10^{-2}}=\left(\frac{4}{R+6}\right) \frac{6}{4} \Rightarrow R=6 \Omega$
105. Conceptual
106. $\vec{V}_{c m}=\frac{m_{1} \vec{V}_{1}+m_{2} \vec{V}_{2}}{m_{1}+m_{2}}=\frac{\vec{V}_{1}+\vec{V}_{2}}{2}=\frac{a \hat{i}+b \hat{j}}{2}$
$\vec{a}_{c m}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}=\frac{\vec{a}_{1}+\vec{a}_{2}}{2}=\frac{3}{2}(a \hat{i}+b \hat{j})$
As $\vec{V}_{c m}$ is parallel to $\vec{a}_{c m}$ so path is a straight line.
107. $\sqrt{2 g h} \geq \sqrt{5 g h} \quad \Rightarrow h \geq \frac{5 R}{2}$
$h_{\min }=\frac{5 R}{2} \quad \Rightarrow y_{\text {min }}=h_{\text {min }}-2 R=\frac{R}{2}$
108. $[v]=\left[T^{-1}\right] \quad[l]=\left[L^{1}\right] \quad[F]=\left[M^{1} L^{1} T^{-2}\right]$
$m=\frac{P^{2} F}{4 v^{2} l^{2}} \Rightarrow[m]=\frac{[F]}{\left[v^{2}\right]\left[l^{2}\right]}=\frac{\left[M^{1} L^{1} T^{-2}\right]}{\left[T^{-2}\right]\left[L^{2}\right]} \Rightarrow[m]=\left[M^{1} L^{-1}\right]$
109. $u=6.25 \mathrm{~m} / \mathrm{s}$
$a=\frac{d V}{d t}=-\frac{5}{2} \sqrt{v} \Rightarrow-\frac{d V}{\sqrt{V}}=\frac{5}{2} d t \Rightarrow \int_{u}^{0} \frac{d V}{\sqrt{V}}=\frac{5}{2} \int_{0}^{2} d t \Rightarrow\left[-\frac{\sqrt{V}}{1 / 2}\right]_{u}^{0}=\frac{5}{2} t \Rightarrow \sqrt{6.25}-0=\frac{5}{4} \times t \quad \Rightarrow t=2 s$
110. $\mathrm{Mg}-\mathrm{T}=\mathrm{Ma} \quad$ for motion of M
$T \times R=I \alpha \quad$ for motion of pulley
$T \times 0.2=(0.32) \alpha \Rightarrow T=1.6 \alpha=1.6\left(\frac{a}{0.2}\right)=8 a$
From $\mathrm{Mg}-\mathrm{T}=\mathrm{Ma} \Rightarrow 20-8 a=2 a \Rightarrow a=2 \mathrm{~m} / \mathrm{s}^{2}$
111. Range of projectile is same for the angle of projection θ and $90^{\circ}-\theta$.
$\because \theta_{1}=30^{\circ}$ and $\theta_{1}=90^{\circ}-30^{\circ}=30^{\circ}$
Thus $R_{1}=R_{2}$
Also, $H=\frac{u^{2} \sin ^{2} \theta}{2 g}$ so that $H \propto \sin ^{2} \theta$

$\therefore \frac{H_{1}}{H_{2}}=\frac{\sin ^{2} 30^{\circ}}{\sin ^{2} 60^{\circ}}=\frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{\sqrt{3}}{2}\right)^{2}}=\frac{1}{3} \Rightarrow H_{1}=\frac{H_{2}}{3}$
112. Horizontal acceleration of the system is, $a=\frac{F}{2 m+m+2 m}=\frac{F}{5 m}$ Lt N be the normal reaction between B and C .
Free body diagram of C gives $N=2 m a=\frac{2}{5} F$

Now, B will not slide downward if $\mu N \geq m_{B} g$ or $\mu\left(\frac{2}{5} F\right) \geq m g$ or $F \geq \frac{5}{2 \mu} m g$ so $F_{\text {min }}=\frac{5}{2 \mu} m g$

(Force diagram in the frame of the car)
Applying Newton's law perpendicular to string $m g \sin \theta=m g \cos \theta \Rightarrow \tan \theta=\frac{a}{g}$
Applying Newton's law along string $\Rightarrow T-m \sqrt{g^{2}+a^{2}}=m a / T=m \sqrt{g^{2}+a^{2}}+m a$
114. $I_{1} w_{1}=I_{2} w_{2}$ (or) $I_{1} n_{1}=I_{2} n_{2}$
115. Energy conservation $\quad-\frac{G M m}{R}+0=-\frac{3}{2} \frac{G M m}{R}+\frac{1}{2} m V^{2}$

$$
V_{e}=\sqrt{\frac{2 G m}{R}} \text { so } V=\frac{V_{e}}{\sqrt{2}}
$$

116. $g^{\prime}=\frac{g}{\left(1+\frac{h}{R}\right)^{2}}, g^{\prime}=\frac{g}{9}$
$\frac{g}{9}=\frac{g}{\left(1+\frac{h}{R}\right)^{2}} \Rightarrow 1+\frac{h}{R}=3 \Rightarrow h=2 R$
117. Heat loss $=$ Heat gain
$m \times 540+m \times 1 \times(100-90)=22 \times 1(90-20) \Rightarrow m=2.8 g$
Net mass of water in mixture $=22+2.8=24.8 \mathrm{~g}$
118. For mixture of gases
$\gamma=\frac{n_{1} C_{p_{1}}+n_{2} C_{p_{2}}}{n_{1} C_{v_{1}}+n_{2} C_{v_{2}}}$
$C_{v}=\frac{f R}{2}$ where, $C_{p}=\left(1+\frac{f}{2}\right) R$
For Helium : $n_{1}=4, f=3$
For oxygen : $n_{2}=\frac{1}{2}, f=5$
$\therefore \frac{C_{p}}{C_{v}}=\frac{4 \times \frac{5 R}{2}+\frac{1}{2} \times \frac{7 R}{2}}{4 \times \frac{3 R}{2}+\frac{1}{2} \times \frac{5 R}{2}}=\frac{47}{29}=1.62$
119. $\lambda_{1} T_{1}=\lambda_{2} T_{2}$
120. $\Delta U=n C_{v} d T$

$$
\Delta Q=\Delta W+\Delta U
$$

$\Delta W=\frac{1}{2} \times\left(2 P_{0}+P_{0}\right) \times V_{0}=\frac{3}{2} P_{0} V_{0}$

$$
\begin{aligned}
& \frac{P V}{T}=n R \Rightarrow T_{1}=\frac{P_{0} V_{0}}{n R}, T_{2}=\frac{4 P_{0} V_{0}}{n R} \\
& \frac{P_{0} V_{0}}{T_{0}}=\frac{2 P_{0} 2 V_{0}}{T^{\prime}} \Rightarrow T^{\prime}=4 T_{0}
\end{aligned}
$$

Change in temperature $=3 T_{0}$

$$
\Delta U=n \times \frac{3}{2} R \times 3 T_{0}=\frac{9}{2} n R T_{0}=\frac{9}{2} P_{0} V_{0} \quad \Delta Q=6 P_{0} V_{0}
$$

121. $\frac{W}{Q_{1}}=1-\frac{T_{2}}{T_{1}}$;

$$
\frac{2}{Q_{1}}=1-\frac{200}{300} \Rightarrow Q_{1}=6
$$

122. $Y=\frac{\text { Stress }}{\text { Strain }} \Rightarrow$ Strain $=0.5$

when the ball is released

when the ball attains When the ball attains terminal velocity $\quad 2 / 3^{\text {rd }}$ of terminal velocity

123.

Figure (1)
Figure (2)
Figure (3)
When the ball is just released, the net force on ball is $W_{\text {eff }}$ ($=\mathrm{mg}$ - buoyant force)
The terminal velocity ' v_{f} ' of the ball is attained when net force on the ball is zero.
\therefore Viscous force $6 \pi \eta r v_{f}=W_{\text {eff }}$
When the ball acquires $\frac{2}{3} r d$ of its maximum
Velocity v_{f} the viscous force is $=\frac{2}{3} W_{\text {eff }} \quad$ Hence net force is $W_{\text {eff }}-\frac{2}{3} W_{\text {eff }}=\frac{1}{3} W_{\text {eff }}$
\therefore Required acceleration is $=\frac{a}{3}$
124. $F=-\frac{d u}{d x}=-8 \cos 2 x \simeq-16 x$ $a=\frac{F}{m}=-\omega^{2} x \Rightarrow \omega=4$
125. Conceptual
126.

$\cos \theta=\frac{1}{2}$

$$
n^{1}=\frac{V}{V-V_{s} \cos \theta} \times n=\frac{V}{\left(V-\frac{V}{4}\right)} \times n=\frac{4}{3} \times n
$$

127. Conceptual
128. Initially $V=\sqrt{\left(V_{C}-V_{L}\right)^{2}+V_{R}{ }^{2}}=10 V$ and $X_{L}=X_{C}=R$

Finally $V=\sqrt{V_{R}{ }^{2}+V_{C}{ }^{2}}=\sqrt{2} . V_{C} \Rightarrow V_{C}=\frac{10}{\sqrt{2}} V$
129. emf in loop $e=-\frac{d}{d t}\left(B \times \pi a^{2}\right)-=\pi a^{2} \frac{d B}{d t}=2 \pi a^{2}$
Current $i=\frac{e}{R}=\frac{2 \pi a^{2}}{R}$
Power $P=e \times i=\frac{4 \pi^{2} a^{4}}{R}$

Charge $q=\int_{0}^{2} i d t=\int_{0}^{2} \frac{2 \pi a^{2}}{R} d t=\frac{4 \pi a^{2}}{R}$
130. $\sigma \propto \frac{1}{R^{2}}$
131. $\Delta U=U_{f}-U_{i}=k_{0}\left(\frac{Q q}{a+x}+\frac{Q q}{a-x}+\frac{q^{2}}{2 a}-\frac{2 Q q}{a}-\frac{q^{2}}{2 a}\right)$
$=k_{0} Q q\left(\frac{a(a-x)+(a+x) a-2\left(a^{2}-x^{2}\right)}{\left(a^{2}-x^{2}\right) a}\right)=k_{0} Q q\left(\frac{2 x^{2}}{a\left(a^{2}-x^{2}\right)}\right)$
Since ' x ' is small, $a^{2}-x^{2}=a^{2}$

$$
\Delta U=k_{0} Q q\left(\frac{2 x^{2}}{a^{3}}\right)
$$

132. $\frac{E}{B}=C$
133. $F=\frac{q^{2}}{2 \varepsilon_{0} A}$, when capacitor is isolated
134. $B=\frac{\mu_{0} i}{2 \pi r} \Rightarrow B \propto \frac{1}{r}$
135. Acceleration is perpendicular to B

$$
\vec{a} \cdot \vec{B}=2 x+3-4=0 \Rightarrow x=\frac{1}{2}
$$

