A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARASHTRA,DELHI,RANCHI,CHANDIGARH

SEC : SR. OUTGOING ALL STREAMS

NEET GRAND TEST-19

91. Read the following statements and Identify the correct statement/s.

A: A choice of change of different units change the number of significant digits.
B : To remove ambiguities in determining the number of significant figures, the best way is to report the measurement in scientific notation.

C: Solid angle made by a hemisphere at its centre is 4π steradian.

सी n®y istrle

स००ा० and C are trle

Key : 2

Solution : Change of units never change significant figures.

$$
\text { Solid angle }=\frac{\text { Sपrialearea }}{\mathbf{r}^{\square}}=\frac{\square \pi \mathbf{r}^{\square}}{\pi^{\square}}=\square \pi
$$

92. A particle moving on a straight line velocity is given by $V=\square e^{\square x}$ then acceleration of particle when velocity is $10 \mathrm{~m} / s$ is

सी

ㄴำ $m \square s^{\square}$

Key : 1

Solution : $\square=\square \mathbf{e}^{\square \square}$

$$
\begin{aligned}
& \frac{\mathbf{d v}}{\mathbf{d} \mathbf{D}}=\square \mathbf{e}^{\mathrm{d}} \\
& a=\frac{d v}{d t}=\square \frac{d v}{d D} \\
& \mathbf{a}=\square \times \square \mathbf{e}^{\square \square} \rightarrow(\mathrm{C}) \\
& \text { Given } V=10 \text {. } \\
& \square \mathbf{e}^{\square \square}=\square \square \Rightarrow \mathbf{e}^{\square \square}=\frac{\square \square}{\square}
\end{aligned}
$$

93. An aeroplane is to go along straight line from A to B, and back again. The relative speed with respect to wind is V. The wind blows perpendicular to line $A B$ with speed v. The distance between A and B is l. The total time for the round trip is
Шा $\frac{\square l}{\sqrt{V^{\square}-v^{\square}}}$
$\mathrm{T} \frac{\square v l}{V^{\square}-v^{\square}}$
$\operatorname{ll} \frac{\square V l}{V^{\square}-v^{\square}}$
$\operatorname{lo} \frac{\square l}{\sqrt{V^{\square}+v^{\square}}}$

Key : 1

Solution :

$$
\text { time }=\frac{\ell}{\sqrt{\mathrm{V}^{2}-\mathrm{v}^{2}}}+\frac{\ell}{\sqrt{\mathrm{V}^{2}-\mathrm{v}^{2}}}=\frac{2 \ell}{\sqrt{\mathrm{~V}^{2}-\mathrm{v}^{2}}}
$$

94. Two unequal masses 1 kg and 2 kg are connected on two sides of light string passing over a light and smooth pulley as shown. The system is released from rest. The larger mass is stopped for a moment, $\mathbf{1 . 0} \mathbf{~ s e c}$ after the system is in motion. The time elapsed before the string is tight again is (in sec)

mel
स००ा

円円ा

Key : 4

Solution : attwoods machine, $a=\left(\frac{2-1}{2+1}\right) g=\frac{g}{3} \quad \mathrm{~V}=\mathrm{u}+\mathrm{at}=0+(\mathrm{g} / 3) 1=\mathrm{g} / 3$
For 1 kg mass: $h_{1}=v t-\frac{1}{2} g t^{2}=\left(\frac{g}{3}\right) t-\frac{1}{2} g t^{2}$
For 1 kg mass: $h_{2}=\frac{1}{2} g t^{2}$ If $h_{2}=h_{1}$ then $t=1 / 3 \mathrm{sec}$
95. A ball is thrown with a velocity of $6 \mathrm{~m} / \mathrm{s}$ vertically downwards from a height $\mathrm{H}=3.2 \mathrm{~m}$ above a horizontal floor. If it rebounds back to same height then coefficient of restitution e is $\square g=\square \square m \square s^{\square}$

स००ा
แ००ा
ाप्या

Key : 4

Solution : $V=10 \quad e=\frac{V_{1}}{10} \begin{aligned} & V_{1}^{2}=4^{2}+2 \text { as } \\ & 100 e^{2}=2 \times 10 \times 3.2 \\ & e=0.8\end{aligned}$
96. The force acting on the block is given by F 긴 t. The frictional force acting on the

$$
\mu=0.2 \xrightarrow{1 \mathrm{~kg}} \rightarrow F=(5-2 t) \mathrm{N}
$$

T००ा
स००।
स००।
THDerf

Key: 1
Solution : At $\mathbf{t}=\mathbf{0}, \mathrm{F}=\mathbf{5 N}$

$$
f=0.2 \times 1 \times 10=2 N
$$

As $F>f$, it in motion friction is kinetic
At $\mathbf{t}=\mathbf{2} \sec , F=1 \mathrm{~N}$,
As F < f, body will move with retardation, but still friction is kinetic i.e., 2 N only.
Kinetic friction is not self adjusting.
97. When a ceiling fan is switched on, it makes 10 rotations in the first 3 seconds. How many rotations will it make in the next 3 seconds? (Assume uniform angular acceleration.)

T००ा
स००ा

ग००ा

Key: D

$$
\omega^{\square}-\omega_{0}^{\square}=\square \propto \theta
$$

Solution :
98. A hollow sphere having mass m and radius R is rolling as shown in the figure. If the speed of centre of mass of sphere is V_{0} and angular speed is $\omega_{\square}=\frac{V_{\square}}{R}$ The angular momentum of the sphere about point O is

끼 $\frac{\square}{\square} M V_{\square} R$
ए। $M V_{\square} R$
Шロ $\frac{M V_{\square} R}{\square}$
$\operatorname{ma} \frac{M V_{\square} R}{\square}$

Key : 4
Solution : $L_{o}=\frac{2}{3} M R^{2} \times \frac{V_{o}}{R} \sim M V_{o} R=\frac{M V_{o} R}{3}$
99. A wheel of radius R rolls on the ground with a uniform velocity ` v '. The relative acceleration of topmost point of the wheel with respect to the bottom most point is
(T) $\frac{v^{0}}{R}$
(T) $\frac{\square v^{\square}}{R}$
$\boldsymbol{T} \frac{v^{\square}}{\square R}$
Tロ $\frac{\square v^{\square}}{R}$

Key : 2

Solution : Rel. acc of top most point w.r.t. bottom most

$$
\mathbf{a}=\frac{(\square \square)^{\square}}{\square \square}=\frac{\square \square^{\square}}{\square}
$$

100. A body of mass ' M ' is moving on a circular track of radius ' r ' in such a way that its kinetic energy ' k ' depends on the distance travelled by the body ' s ' according to relation $k=\beta s$, where β is a constant. The angular acceleration of the particle is
Шा $\frac{\beta r}{M^{\square}}$
ㄴ. $\sqrt{\frac{\beta r}{M}}$
묘 $\frac{M^{\square} r}{\beta}$
피 $\frac{\beta}{M r}$

Key : 4

Solution : $K=\beta s \quad \frac{1}{2} m v^{2}=\beta s$
$\mathbf{a}_{\mathrm{y}}=\frac{\beta}{\square} \Rightarrow \mathbf{r} \alpha=\frac{\beta}{\square}$
$\alpha=\frac{\beta}{\mathbf{M r}}$
101. A particle undergoes SHM with a time period of 2 seconds. In how much time will it travel from its mean position to a displacement equal to half of its amplitude?
ए। $\frac{\square}{\square} \mathbf{s}$
ए $\frac{\square}{\square} \mathbf{s}$
T $\frac{\square}{\square} \mathbf{S}$
ㅍㅁ $\frac{\square}{\square} \mathbf{s}$

Key: D
Solution : $\mathbf{y}=\square \boldsymbol{\operatorname { s i n }} \omega \mathbf{t}$
Here $\mathbf{y}=\frac{\square}{\square}$
102. Two waves travelling in a medium in the x-direction are represented by $\mathbf{y}_{\square}=\square \sin (\alpha \mathbf{t}-\beta \square)$ and $\quad \mathbf{y}_{\square}=\square \square \square \mathbf{s}(\beta \square+\alpha \mathbf{t}-\pi \square \square)$, where \mathbf{y}_{\square} and $\mathbf{y}_{\square} \quad$ are the displacements of the particles of the medium, \mathbf{t} is time, and α and β are constants. The two waves have different

T० Speeds
ा०० avelenghts

THOrellenlies

Key: B
Solution : The first wave is propagating along positive \mathbf{X}-axis, the second is along negative X - axis. But both the waves have same speed, frequency and wavelength
103. An astronaut of mass m is working in a satellite orbiting the earth at a distance h from the earth's surface. The radius of the earth is R, while its mass is M. The gravitational pull F_{G} on the astronaut is

पロ $F_{G}=\frac{G M m}{\square R+h \square \square}$
띠 $<F_{G}<\frac{G M m}{R^{\square}}$
Key : 3
Solution : $\mathrm{Z}_{\mathrm{a}}=\frac{\square \mathbf{M}_{1} \mathbf{M}_{\square}}{\mathbf{d}^{\square}}$
िํㄹ A car is moving with a uniform speed on a level road. Inside the car there is a balloon filled with helium and attached to a piece of string tied to the floor. The string is observed to be vertical. The car now takes a left turn maintaining the speed on the level road. The balloon in the car will (Here the car is supposed to be air tight)

Key : 4

Solution : Due to pseudo force.
105. A raindrop reaching the ground with terminal velocity has momentum p. Another drop of twice the radius, also reaching the ground with terminal velocity, will have momentum
स००
स००p
आ०ा०p

Key: D
Solution प $\mathbf{P}=$ १

$\square \mathrm{enle}] \propto \mathbf{r}^{\text {D }}$
106. One mole of an ideal monatomic gas performs a cyclic process indicated by ABCDA. The temperatures of the gas at A, B, C and D are respectively $T, 2 T, 6 T$ and $3 T$. If R is the molar gas constant, the work done by the gas in the cyclic process is

metr
mever

Key : 3
Solution : $\quad \omega_{\text {ロロ }}=\square$
$\left.\left.\omega_{\square \mathbf{C}}=\mathbf{p}\right] \mathbf{d}\right]=\mathbf{n}[\mathbf{C l}$
— P.(4T)

$$
\begin{aligned}
& \omega_{\mathbf{C} \square}=\square \\
& \omega_{\text {प } \mathbb{D}}=\mathbf{p} \mid \mathbf{d} \mathbf{d}=\mathbf{n}[\mathbf{d} \mathbf{d}
\end{aligned}
$$

— P.(T-3T)
$=$ [2RT
Total

$$
\begin{aligned}
& \omega=(\text { प००-१०० }) \\
& =\mathbf{2 R T}
\end{aligned}
$$

107. In a p-n junction, the depletion region is 400 nm wide and an electric field of $\cos \square^{\square} V \square m$ exists in it. What should be the minimum kinetic energy of a conduction electron which can diffuse from the n-side to the \mathbf{p}-side ?

T००ा el

Key : 3
Solution : $\quad V=$ E.d

$$
\begin{aligned}
& =\square \square \times \square^{-\square}
\end{aligned}
$$

$$
\begin{array}{r}
\quad=\mathbf{0 . 2} \text { volt } \\
\therefore \square \text { negy }=\square \square e \square
\end{array}
$$

108．A solid sphere having a coefficient of cubical expansion＇α＇is suspended from a rigid support with a thread in to a beaker containing a liquid of coefficient of real expansion＇β＇such that the sphere is completely submerged in the liquid．On heating the system，the tension in the string is found to be constant．This is possible when

밈 β

Key： 3
Solution ： $\mathbf{T}=\mathbf{m g}-\mathrm{D}_{\mathrm{D}}$
$\Delta \mathbf{T}=\Delta \mathbf{m g}-\Delta \square_{0}$
Either $\Delta \square=\square$ and we know that $\mathbf{m g}$ does not change on heating $\Delta \square \mathbf{g}=\square$
So，$\Delta \mathrm{D}_{\mathrm{u}}=\mathrm{D}$

$$
\begin{aligned}
& \Delta \square_{\square} \mathbf{d}_{\mathrm{\square}} \mathbf{g}=\square \\
& \Delta\left(\frac{\square}{\mathbf{d}_{\mathrm{a}}} \mathbf{d}_{\mathrm{a}} \mathbf{g}\right)=\square \\
& \Delta \mathbf{d}_{\mathrm{\square}}=\Delta \mathbf{d}_{\mathrm{a}} \\
& \Rightarrow \alpha=\beta
\end{aligned}
$$

109．In the figure the volume of flask Y is twice that of flask X and is connected by a narrow tube as shown．The system is filled with an ideal gas and the flasks X and Y are kept at 200 K and 400 K respectively．If the mass of the gas in X is＂m＂，the mass of the gas in Y is

आロロロ
पा००
T००

Key： 3
Solution ：PV＝m r T

$$
\frac{\square_{\square}}{\square_{\square}}=\frac{\square_{\square}}{\square_{\square}} \frac{\square_{\square}}{\square_{\square}}
$$

110. Ice, water and steam co-exist at triple point temperature 273.16 K and pressure 4.6 mm Hg. In a system in which the triple point conditions of temperature and pressure exist, the pressure is increased a little while keeping the temperature constant, then the system contains

THI ater 1 nly
THsteal nly
THI ater and ile

Key : 2

Solution : At triple point, when pressure is increased, it completely converts into water.
111. A 20 cm column of air is trapped by a column of $\mathbf{H g} 15 \mathrm{~cm}$ long in a capillary tube of uniform bore when the tube is held horizontally in a room where the atmospheric pressure is 75 cm of mercury. The length of the air column, when the tube is held vertically with open end down will be

जिए।

Key: 2
Solution : $\mathbf{P}_{\square} l_{\square}=\mathbf{P}_{\square} l_{\square}$
112. Two spherical black bodies made of same material and with the same surface finish have masses M_{1} and M_{2} and are at temperatures T_{1} and T_{2}. If they are radiating the same power, $M_{1} \square M_{0}$ must be

Key: 3
Solution : $\mathbf{P}=\square \mathbf{e} \sigma \square^{\square}$

$$
\begin{aligned}
& \square \alpha \frac{\square}{\square^{\square}} \\
& \Rightarrow(\square)^{\square \square} \alpha \frac{\square}{\square^{\square}} \\
& \Rightarrow(\mathbf{M})^{\square \square} \alpha \frac{\square}{\square^{\square}} \\
& \Rightarrow \frac{\mathbf{M}_{\square}}{\mathbf{M}_{\square}}=\left(\frac{\square_{\square}}{\square_{\square}}\right)^{\square \times \frac{\square}{\square}}=\left(\frac{\square_{\square}}{\square_{\square}}\right)^{\square}
\end{aligned}
$$

113.

The valve V in the bent tube is initially kept closed. Two soap bubbles A (smaller) and B (larger) are formed at the two open ends of the tube. V is now opened, and air can flow freely between the bubbles.

Key : 3
Solution: $\quad \mathbf{P} \alpha \frac{\square}{\square}$ and

$$
\mathbf{P} \square \square \mathrm{r}]
$$

114. A weight is hung over a pulley and attached to a string composed of two parts, each made of the same material but one having four times the diameter of the other. The string is plucked so that a pulse moves along it, moving at speed $v 1$ in the thick part and at speed v_{2} in the thin part. What is v_{1} / v_{2} ?

Key : 3
Solution : $\square=\sqrt{\frac{\square}{\pi \mathbf{r}^{\square} \mathbf{d}}} \Rightarrow \square \alpha \frac{\square}{\mathbf{r}}$
115. A uniform rope of length ' s ' is suspended from a ceiling as shown. A particle is dropped from the ceiling at the instant a wave pulse is formed at the lower end. Where will be particle meet the pulse?

Key : 2
Solution : Let ' x ' be the distance from top, $(l-x)$ from the bottom

$$
\begin{aligned}
& \mathbf{t}_{\text {patiolice }}=\mathbf{t}_{\square \text { ave }} \\
& \sqrt{\frac{2 x}{g}}=\sqrt{\frac{2(l-x)}{g / 2}} \\
& \left.\square=\frac{\square l}{\square} \operatorname{Crld} \mathbf{~}\right] \mathbf{p}
\end{aligned}
$$

116. A ray of light travels from an optically denser to a rarer medium. Maximum possible deviation is θ. Maximum possible deviation if light travels from rarer to denser is

ㄴㅁ $\frac{\theta}{\square}$
ाप θ
ㄴㅁ $\frac{\theta}{\square}$

Key : 2

Solution : denser to rarer, max. Deviation,

$$
\begin{aligned}
& \mathbf{d}=(\mathbf{1 8 0}-\mathbf{2 C}) \\
& \theta=(\mathbf{1 8 0}-\mathbf{2 C}) \\
& \theta=\mathbf{2}(90-C) \rightarrow(\square)
\end{aligned}
$$

rarer to denser,

$$
\begin{aligned}
& \mathbf{i}=\square \square^{\circ} \\
& \mathbf{r}=\mathbf{C} \\
& \mathbf{d}=(\square-\mathbf{r})=(\square \square-\mathbf{C}) \\
& \mathbf{d}=\frac{\theta}{\square} \rightarrow(\square)
\end{aligned}
$$

117. In a Young's double-slit experiment, the central bright fringe can be identified TIV s it has greater intensity than the 7 ther पright \square ringes

प०० s it is \square ider than the \square ther \square right [ringes
प्र s it is namfl er than the 0 ther Dright [ringes

Key : D
Solution : Central fringe will only be white in colour
118. A narrow stream of electrons of energy 100 eV is fired at two parallel slits very close to each other. The distance between the slits is 10 A . The electron waves after passing through the slits interfere on a screen, $\mathbf{3 m}$ away from slits. The fringe width is
mentil
mentil

Key : 1

Solution : Wavelength of e^{-}waves

Like YDSE, $\beta=\frac{\lambda \square}{\mathbf{d}}$

$$
\beta=\frac{\square \square \times \square}{\square \square}=\square \text { पाप }
$$

119. A prism shaped imaginary structure is given. A point charge ' q ' is kept as given in figure. The electric flux passing through the prism is

(1) $\frac{q}{\square \epsilon_{\square}}$
$\operatorname{ma} \frac{q}{\square \epsilon_{\square}}$
सा $\frac{q}{\square \square \epsilon_{\square}}$
सा $\frac{q}{\square \epsilon_{\square}}$

Key : 3
Sol : $360^{\circ} / 45^{0}=8$ To enclose the charge one more such set should be placed above it. So total 16 prisms are required.
120. For a closed surface through which the net flux is zero, each of the following four statements could be true. Which of the statements must be true?

b प he net lharge inside the slrfale is ler]
c [he eleltril lield is lerl everyl here Inthe slrfale
 slrfale

Tम $a \square c$
TObDd
$\square \square b \square c$

Key : 2

Solution : Charges might be there, but net charge is zero inside and $\square \neq \square$ on surface.
121. Three plates A, B, C each of area $\angle D \mathrm{~cm}^{\square}$ have separation 3 mm between A and B and 3 mm between B and C. The energy stored when the plates are fully charged is

Key : 2
Solution : $\mathbf{2}$ Capacitors in parallel

$$
\begin{aligned}
& \mathbf{U}=\frac{\square}{\square}(\square \mathbf{C}) \mathbb{T}^{\square} \\
& \square=\left(\frac{\square_{\square} \bar{d}}{\mathbf{d}}\right) \mathbb{D}^{\square}
\end{aligned}
$$

122. In the circuit shown in figure, if ammeter and voltmeter are ideal, then the power consumed in $\square \Omega$ resistor will be

 गया०

Key : 2
Solution : If volt meter ideal
$\mathbf{R}=\propto$, so no current through volt meter branch.
$\square_{\mathrm{ell}}=\square \Omega \Omega$
$\mathbf{i}=\frac{\square \square}{\square \square}=[\square$

$\mathbf{i}_{1}=\frac{\square}{\square} \square$
Power is ${ }^{\prime} \square \Omega, \mathbf{P}={ }_{4}$ 四

$$
\mathbf{P}=\frac{\square}{\square} \times \square=\square \square
$$

123. Three identical bulbs are connected as shown in figure. When switch S is closed, the power consumed in bulb B is P. What will be the power consumed by the same bulb when switch S is opened?

Key: 1

Solution : When switch is closed

$$
\mathrm{Z}_{\mathrm{el}}=\frac{\mathrm{ZD}}{\square}
$$

Total current, $i=\frac{\square \square}{\square \square}$
Current in bulb ' B '. $i_{\square}=\frac{i}{\square}$

$$
\mathbf{i}_{1}=\frac{\square}{\square \square}
$$

Power of bulb ' \mathbf{B} ', $\mathbf{P}=\boldsymbol{i}_{1}$ [

$$
\mathbf{P}=\frac{\square^{\square}}{\square \square} \rightarrow(\square)
$$

When switch 'S' opened

$$
\square_{\mathrm{ed}}=\square \mathrm{D}
$$

Total current, $i=\frac{\square}{\square \square}$
Power in ' B^{\prime}. $\mathbf{P}^{\square}=\mathbf{i}^{\mathrm{D}} \square$

$$
\begin{aligned}
& \mathbf{P}^{\square}=\frac{\square^{\square}}{\square \square} \rightarrow(\square) \\
& \text { ss } \frac{\mathbf{P}}{\mathbf{P}^{\square}}=\frac{\square}{\square} \Rightarrow \mathbf{P}^{\square}=\frac{\square \mathbf{P}}{\square}
\end{aligned}
$$

प्रा० Infinite conducting rings each having current I in the directions shown are placed concentrically in the same plane as shown in the figure (currents in successive coils are
 induction at their common centre is

Key : 4

Solution $B_{C}=\frac{\mu_{o} I}{2 r}$ due to each circular loop
125. A charged particle moves undeflected in a region of crossed electric and magnetic fields. If the electric field is switched off, the particle has an initial acceleration a. If the magnetic field is switched off, instead of the electric field, the particle will have an initial acceleration

गणन a

THI a

Key : 3

Solution [|nitiallurles are sal e]

126. Into a transverse uniform magnetic field of induction 6.5 G an electron is projected with a speed $\square \square \times \square \square^{\square} \mathrm{m} / \mathrm{s}$, at angle \square^{\square} to the boundary. The time elapsed by the electron in the field in nano second is

TDinlinity

Key : 3
Solution : It comes out of field after it completes half revolution

$$
\begin{aligned}
& \mathbf{t}=\frac{\pi \mathbf{r}}{\square}=\frac{\pi\left(\frac{\square \square}{\square \square}\right)}{\square} \\
& \mathbf{t}=\frac{\pi \mathbf{M} \mathbf{M}}{\square \square}
\end{aligned}
$$

127. In LCR circuit current resonant frequency is 600 Hz and half power points are at 650 Hz and 550 Hz . The quality factor is

TOU
T००
ए।

Key : 3

Solution : $\mathbf{Q}=\frac{\omega}{\Delta \omega}$
128. A capacitor of capacitance C is given charge Q and then connected in parallel to a coil of inductance L. There is no resistance in the circuit. When the charge on the capacitor becomes zero, the current in the coil will be
Ш $Q \sqrt{\frac{L}{C}}$
띠 $\frac{Q}{\sqrt{L C}}$
ㅁ $Q \sqrt{\frac{C}{L}}$
Tolerf

Key : 2

129. In a uniform magnetic field of $\square^{-\square} T$ in free space, the energy density is u. The electric field which will produce the same energy density in free space is

Key : 2

Solution: $\quad U=\frac{\square}{\square} \epsilon_{\square} E^{\square}=\frac{B^{\square}}{\square \mu_{0}}$ and $C=\frac{\square}{\sqrt{\epsilon_{\square} \mu_{\square}}}$
130. A bar magnet is demagnetized by inserting it inside a solenoid of length $\mathbf{0 . 2 m}, 100$ turns, and carrying a current of 5.2 A . The coercivity of the bar magnet is:

आ

Key : 2

Solution: $\quad B=\mu_{0} n I$

$$
H=n I
$$

131. An example of a perfect diamagnet is a superconductor. This implies that when a superconductor is put in a magnetic field of induction B, the magnetic field B_{S} inside the superconductor will be such that:
प $B_{s}=-B$
(1) $B_{s}=$]
एव $B_{s}=B$
니 $B_{s}<B$ ㅁ $\mathbf{t} B_{s} \neq \square$

Key: 2
Solution ; For super conductors, $x=-1$ Since $\mu_{r}=1+x \quad \Rightarrow \mu_{r}=0$
랠 A small ball is projected with initial speed u and at angle θ with horizontal from ground. The de-Broglie wave length of ball at the moment its velocity vector becomes perpendicular to initial velocity vector is
Шロ $\frac{h}{m u}$
ㅁ) $\frac{h}{m u \sin \theta}$
TI $\left(\frac{h}{m u}\right) \boldsymbol{\operatorname { t a n }} \theta$
एँ $\frac{h}{m u \square ป \mathbf{s} \theta}$

Key : 3
Solution: The velocity of projectile when its initial velocity is perpendicular to final vector is

$$
\begin{aligned}
& v=u \cot \theta \\
& \lambda=\frac{h}{m u \cot \theta} \quad \lambda=\left(\frac{h}{m u}\right) \tan \theta
\end{aligned}
$$

133. An energy of 24.6 eV is required to remove one of the electrons from a neutral helium atom. The energy (in eV) required to remove both the electrons from a neutral helium atom is

Key : 4

Solution : $\square=-\square \square \square \times \frac{\bar{q}^{\square}}{\mathbf{n}^{\square}}$

$$
Z=2
$$

134. An electron (mass m) with an initial velocity $v=v_{\square} \hat{\mathbf{i}}$ is in an electric field $\bar{\square}=\square_{\square} \hat{D}$. If initial wavelength $\left.\lambda_{\square}=h\right] v_{\square}$, then its de Broglie wavelength at time t is given by

Tロ λ_{\square}

$$
\operatorname{\omega \square } \lambda_{\square} \sqrt{\square+\frac{\mathbf{e}^{\square} \square_{\square}^{\square} \mathbf{t}^{\square}}{\square^{\square} \mathbf{v}_{\square}^{D}}}
$$

Key : 3
Solution : $V=u+a t$

$$
\begin{aligned}
& =V_{o} \hat{i}-\frac{e}{m} E_{o} t \hat{j} \\
& V=\sqrt{V_{o}^{\square}+\frac{e^{\square} E_{o}^{\square} t^{\square}}{m^{\square}}} \\
& \lambda=\frac{h}{m v}
\end{aligned}
$$

$$
=\frac{h}{\left.m \sqrt{V_{\square}^{\square}\left(\square+\frac{e^{\square} E_{\square}^{\square} t^{\square}}{m v^{\square}}\right.}\right)}
$$

$$
=\frac{h}{m v_{o} \sqrt{\square+\frac{e^{\square} E_{\square}^{\square} t^{\square}}{m^{\square} V_{\square}^{\square}}}}
$$

$$
=\frac{\lambda_{o}}{\sqrt{\square+\frac{e^{\square} E_{\square}^{\square} t^{\square}}{m^{\square} V_{\square}^{\square}}}}
$$

135. At $t=0$, a radioactive substance has a mass m. Its half-life is $\mathbf{1 0}$ minutes. When $t=t_{1}$, the amount of substance disintegrated is $m / 5$ and when $t=t_{2}$, the amount of substance disintegrated is $3 m / 5$. Then the time interval $\left(t_{2}-t_{1}\right)$ is

Key : 1

Solution : At $\mathrm{C}_{\mathrm{\square}}\left[\right.$ remaining mass $\frac{\square \mathbf{M} \square}{\square}$
At $\mathbb{L t}_{\square}\left[\right.$ remaining mass $\frac{\square M \square}{\square}$
In time interval $\left(t_{1}-t_{1}\right)$ it is reduced to half.

A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARASHTRA,DELHI,RANCHI,CHANDIGARH

SEC : SR ELITE (SET-1)
DATE: . . 20
SUB : CHEMISTRY
NEET GRAND TEST-7

سाप he str[ngest alidil

—ey CD

प्रा० Pl sitive eleltrl ngain enthalyy is highest \mathbb{r}
साप
साप \mathbf{r}
Tाप
Tul \mathbf{r}
—ey
 प्रा Pielleleltril sll stanle
methlerenle
Toll lartl
TIV raphite
TICharllal
[ey Cl

—ey

स०ा elll plsitiln

ापा elll plsitiln
—ey
 Derl Crder is

mul lell has $-1-S$ Cinlage

[ey CD
S—Mtiln

© ey CD

Ma Metal ens

Tulaltll es
TIChain 1 sIC ers

पey

 \square eight 10 etal is

© ey CD

पाल t

TID nly sllufse
Tul nly hilllse

स०० nly glulse

© ey CD

	\square	y
T0	－M	－M
円ロ		
Wロ	－	－M
Tロ	$\square \mathbf{M}$	

प ey CD

$\operatorname{mol} \mathrm{D}^{-\mathrm{D}} \mathbf{M}$
$\operatorname{mec}{ }^{-\square} \mathbf{M}$

© ey Cl
$\mathbf{S} \square \square \mathbf{t i l} \mathbf{n} \square \square \mathbf{s p}=\left[\square \mathbf{g}^{+}\right][\mathbf{C} \square]$

$$
\square \times \square^{-00}=\mathbf{S}^{\square}+\mathbf{S} \times \mathrm{am}
$$

$$
\mathbf{s}\left[\square \times \square^{-\square} \mathbf{M}\right.
$$

पा
mapenilifin

साप सalalin
TID etralyline
© ey CD

प्डा PICyethenel PC CII elll nand nel prene are all

Tll indegradalle plyl ens

T०ा dditionh

© ey Cl

पा० ital inl
स०० ital inl
TRE ital inl
T०० ital inl
© ey CD

प्रा Holme's signals can be obtained by using
$\operatorname{TO} \mathbf{C a C}_{\square}+\mathbf{C a C l}_{\square}$
(T) $\mathbf{C a C}_{\square}+\mathbf{C a}_{4} \mathbf{P}_{\square}$
$\operatorname{mo~} \mathbf{C a C}_{\square}+\mathrm{CaCl}_{\square}$
TI $\mathbf{C a}_{4} \mathbf{P}_{0}+\mathrm{CaCl}_{\square}$

प ey CD
$\mathbf{S} \square \| \mathbf{i n} \square \mathbf{C a C}_{\square}+\mathbf{C a}_{4} \mathbf{P}_{\square}$ used in the Holme's signals.
 Chrll ate
प् $\mathbf{C a}^{+\square}$
$\mathrm{T} \mathbf{P} \mathbf{P}^{+\square}$
स० $\mathbf{a}^{+\square}$

— ey CD

TDSi
साप
सी०
सीवe
— ey CD

— ey CD

पey Cl

सिए।

TOL Cetanilide
TIPt
—ey

—ey
SUMtiln

 —
$\operatorname{TOD} \mathbf{i}_{1}$]
$\operatorname{mol} \mathbf{a}_{1} \square_{\square}$
सिए।
Tilel
— ey CD

प्रा० Neils Bohr＇s atomic model is not appliliale tll
साप \mathbf{e}^{+}
सी $\mathbf{e}^{+\square}$
T०I
$\operatorname{TBD} \mathbf{i}^{+\square}$

प ey Cl
SUMiln Bohr＇s atomic model is applicable to Hydrogen and hydrogen like ions

साप

स०००ロ
$\operatorname{TOC} \square_{\square}$
© ey CD
S—Dtiln

円ロ

円ロ

© ey CD

S—Milln

— ey CD

$$
\begin{aligned}
& \mathrm{T}\left[\mathbf{C}\left[\mathbf{C}[)_{\square}\right]^{-\square} \operatorname{and}\left[\mathbf{C}\left(\mathrm{QP}_{\square}\right)_{\square}\right]^{+\square}\right. \\
& \mathrm{T}\left[\mathbf{C}\left[\left(\square_{\square} \square\right)_{\square}\right]^{+\square} \operatorname{and}\left[\square \mathbf{h}\left(\square_{\square} \square\right)_{\square}\right]^{+\square}\right.
\end{aligned}
$$

\square ey CD

$$
\mathbf{C} \square \text { is } \square \mathbf{d} \text { series } \square h \rightarrow \square d \text { series }
$$

$\operatorname{Tr} \mathrm{Cl}_{\square}-\mathrm{Cl}_{\square}-$
$\mathrm{m}\left(\mathrm{CD}_{\square}\right)_{\square} \mathbf{C} \square-$
$\operatorname{mo}\left(\mathbf{C D}_{\square}\right)_{\square} \mathbf{C}-$
\square ey CD

गया० g

—ey

—ey
 प्या

T००
पाँ
प्ट
TIUMhelane
पey

SUMill

(C)

Statel entlll

—ey
SUTill n ll tellilin $\Delta \square=\square$ and $\Delta \square^{\circ} \neq \square$

 Inderg] Cannillarl realtiln]
T००
T०।
円ाँ
Tाप
© ey Cl
Sri Chaitanya

$\operatorname{TD} \mathbf{C}_{\square} \square_{\square}$

© ey CD

$$
\begin{aligned}
& \text { MO } 1 \text { nllo }
\end{aligned}
$$

$$
\begin{aligned}
& \square \mathbf{n} \times\left(\mathrm{Cl}_{\square} \mathrm{\square}\right) \\
& =\frac{\square D}{\square D}=0
\end{aligned}
$$

$$
\begin{aligned}
& \square \mathbf{C}_{\square} \square_{\square} \square_{\square}
\end{aligned}
$$

 alidil hydrlgenis
TID niline
TID MMethylaniline

— ey CD
SUCill

$\square \mathrm{ns}$ []

Sri Chaitanya
Page 9
\square ey CD

© ey CD

TIV
TIC
T००
Tロロ
© ey CD

१००० प nislle is sllelted tl nitratiln tl give＇ x ＇as major product．＇ X ＇on bromination gives＇ Y ＇as major product then＇ Y ＇is

Ш－

田 ${ }^{\square}$

Tロ

—ey

SOMilln
$\mathbf{M a W r}$

TIStrIng alid
THI eal alid

T० MDderately strlng alid

प ey CD

पा०० प hilh
TID eratin
TITMSTlin
TD Mylsin

© ey CD
Sulill

१
THI a
T०प
सी
आ०००
— ey CD

$\operatorname{SQD} \| \mathrm{t} \square \mathbf{G a}$ has least melting point among $\mathbf{1 3}^{\text {th }}$ group elements.

 gives a pentyne. The value of ' x ' is

—ey
S—Dtiln

$$
\mathbf{C} \square_{\square}-\mathbf{C} \equiv \mathbf{C}-\mathbf{C} \square_{\square}-\mathbf{C} \square_{\square} \xrightarrow{\mathbf{C}_{0} \square_{0} \| \mathbf{r}} \mathbf{C} \square_{\square}-\mathbf{C} \equiv \mathbf{C}-\square \mathbf{a} \square
$$

