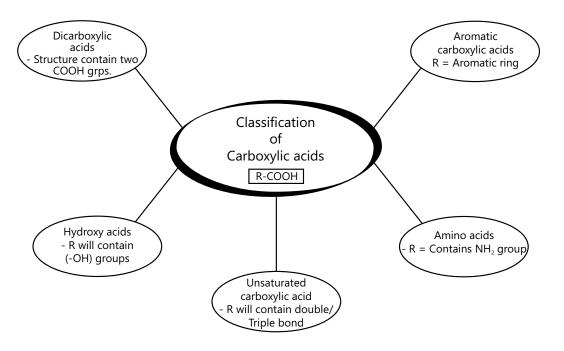

24. CARBOXYLIC ACID AND DERIVATIVES

1. INTRODUCTION

Compounds containing the carboxyl group are distinctly acidic and are called carboxylic acids.


They have general formula C_nH_{2n}O₂

Carboxylic acid derivatives are compounds with functional groups that can be converted to carboxylic acids by a simple acidic or basic hydrolysis.

Flowchart 24.1: Derivatives of carboxylic acid

2. CLASSIFICATION OF CARBOXYLIC ACIDS

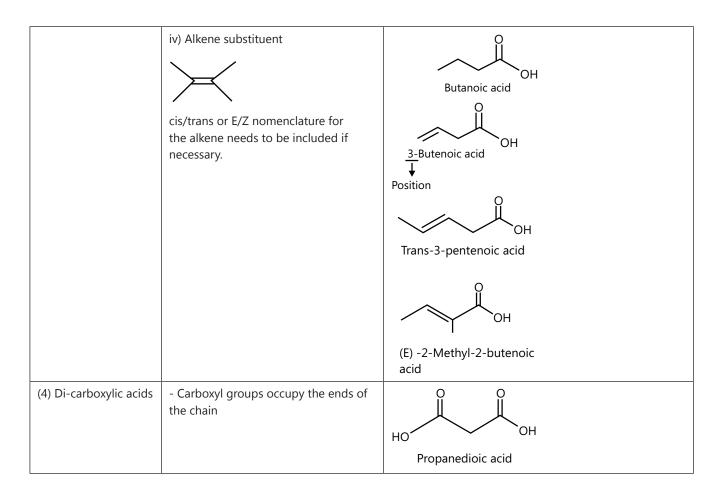
Flowchart 24.2: Classification of carboxylic acid

3. NOMENCLATURE OF CARBOXYLIC ACIDS

The IUPAC system of nomenclature assigns a characteristic suffix to these classes. The ending "e" is removed from the name of the parent chain and is replaced –"oic" acid.

Name
$$\rightarrow$$
 Alkane \rightarrow Alkanoic acid
$$\rightarrow$$
 Given the # 1 location

Position in numbering.


Table 24.1: IUPAC name of simple carboxylic acid

Formula	Common Name	Source	IUPAC Name	Melting Point	Boiling Point
нсоон	Formic acid	Ants (L. Formica)	Methanoic acid	8.4 °C	101 °C
CH ₃ COOH	Acetic acid	Vinegar (L. Acetum)	Ethanoic acid	16.6 °C	118 °C
CH ₃ CH ₂ COOH	Propionic acid	Milk (Gk. Protus prion)	Propanoic acid	-20.8 °C	141 °C
CH ₃ (CH ₂) ₂ COOH	Butyric acid	Butter (L. Butyrum)	Butanoic acid	-5.5 °C	164 °C
CH ₃ (CH ₂) ₃ COOH	Valeric acid	Valerian root	Pentanoic acid	-34.5 °C	186 °C
CH ₃ (CH ₂) ₄ COOH	Caproic acid	Goats (L. Caper)	Hexanoic acid	-4.0 °C	205 °C
CH ₃ (CH ₂) ₅ COOH	Enanthic acid	Vines (Gk. Oenanthe)	Heptanoic acid	-7.5 °C	223 °C
CH ₃ (CH ₂) ₆ COOH	Caprylic acid	Goats (L. Caper)	Octanoic acid	16.3 °C	239 °C
CH ₃ (CH ₂) ₇ COOH	Pelargonic acid	Pelargonium (an herb)	Nonanoic acid	12.0 °C	253 °C
CH ₃ (CH ₂) ₈ COOH	Capric acid	Goats (L. Caper)	Decanoic acid	31.0 °C	219 °C

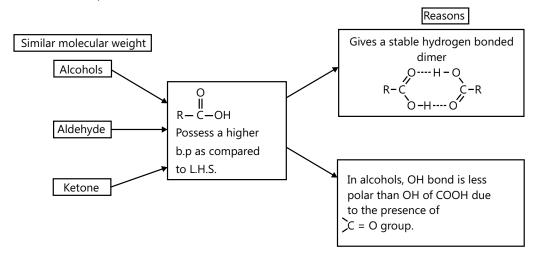
Example:

Table 24.2: IUPAC naming of substituted carboxylic acid

(1) Naming carboxyl	- Carboxyl group added to a ring.	Example
groups attached to a ring	- Suffix " carboxylic acid" added to name of the cyclic compound	СОН
		Cyclopentanecarboxylic acid OH Cis-2-Bromocyclohexanecarboxylic acid
(2) Naming carboxylates	- Carboxyl group attached to a cation Sodium Acetate Cation "-ic acid" replaced by "-ate"	O Na [⊕] Sodium ethanoate (Sodium Acetate) H ₃ C CH ₂ CO [⊕] K [⊕] Potassium Propanoate (Potassium propionate)
(3) Naming the acids containing other functional groups (-COOH = highest priority)	i) Hydroxyl substituent –OH 'ℓ' from hydroxyl is removed	OH OH 2, 4- Dihydroxybutanoic acid
	ii) Aldehyde / ketone substituent Output Description: Aldehyde / ketone substituent Output Aldehyde / Ketone	Name as " OXO-" OH OH 2- Oxobutanoic acid
	iii) Amino substituent – NH ₂	OH NH ₂ 2-Aminobutanoic acid

4.PHYSICAL PROPERTIES OF ACIDS AND ACID DERIVATIVES

(a) Physical appearance and odour

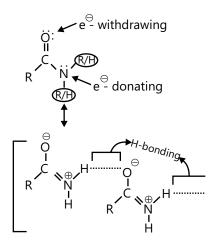

 $C_1 - C_3$ = Liquid = Colourless & pungent smelling

 $C_4 - C_6 = Liquid$ (oily) = Colourless & unpleasant smell

 $C > C_7 = waxy solids = Colourless$

(b) Boiling oints: Refer the following Flow-chart for a better understanding.

(L.H.S.=Left Hand Side)



Flowchart 24.3: Comparison of B.p of carboxylic acid with other carbonyl compound

(c) Melting Points:

(i) Carboxylic acid with more than 8 carbon atom and a double bond have low melting point due to the inability to form a stable lattice.

- (ii) Structures with even number of C atoms have a higher melting point as compared to structures having odd number of C-atoms.
- (iii) The high M.Pof primary and secondary amides is due to the strong hydrogen bonding and the presence of electron-withdrawing and electron-donating group.

(d) Solubility:

- (i) Lower carboxylic acid $(C_1 C_2)$ are miscible with water acids
- (ii) Instead of dimerization, they form H-bonds with water.
- (iii) As the length of chain increases, the solubility decreases.
- (iv) The derivatives like acid chlorides and anhydrides react with solvents like H₂O & alcohol.

5. METHODS OF PREPARATION OF CARBOXYLIC ACIDS

General reaction of preparation of carboxylic acid

RMgX +
$$\overset{\circ}{C} = \overset{\circ}{O} \xrightarrow{dry \text{ ether}} R - CH_2 - COOH$$

Grignard reagent carboxylation

R-C=N+2H₂O

Acid / Alkaline hydrolysis of nitriles

(a) Synthesis of carboxylic acids by the carboxylation of Grignard reagents

$$\begin{array}{c|c} \delta^{-} & \delta^{+} & \vdots \\ R-MgX + C = O \\ \end{array} \qquad \begin{array}{c|c} O \\ C = O \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C = O \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C = O \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ \end{array}$$

-RMgX acts as a nucleophile

Example:

$$\begin{array}{ccc} \text{CH}_{3}\text{C}\text{HCH}_{2}\text{CH}_{3} & \xrightarrow{1. \text{ Mg/diethyl ether}} & \text{CH}_{3}\text{C}\text{HCH}_{2}\text{CH}_{3} \\ \text{Cl} & & & & \text{CO}_{2}\text{H} \\ & & & & & & \text{CO}_{2}\text{H} \end{array}$$

2-Chlorobutane

2-Methylbutanoic acid (78 - 88%)

9-Bromo-10-methylphenanthrene

10-Methylphenanthrene-8-carboxylic acid

$$\begin{array}{c} \text{CH}_3\text{-CH-MgBr} \xrightarrow{\text{(i) CO}_2} & \text{CH}_3\text{-CH-COOH} \\ | & | & | \\ \text{CH}_3 & \text{CH}_3 \end{array}$$

Isobutyric acid (2-methyl propanoic acid)

(b) Synthesis of Carboxylic acids by the hydrolysis of nitriles Mechanism:

Hydrolysis of cyanides (Acid catalysed):

RC
$$\equiv$$
N +2H $_2$ O + H $^+$ Heat \rightarrow R - C - OH + NH $_4$ Nitrile Water Carboxylic Ammonium

Mechanism:

(a) Formation of Amide

(b) Formation of Acid

Example:

PLANCESS CONCEPTS

• Alkyl cyanides needed for the purpose can easily be prepared from the corresponding alkyl halides with alcoholic KCN or NaCN.

$$R - CI + KCN \rightarrow R - C \equiv N + KCI$$

• This reaction is used to ascend the series having one carbon atom more than the corresponding alkyl halides which are prepared from alcohol on treating with phosphorus halide.

$$ROH + PX_5 \rightarrow R - X + POX_3 + HX$$

• This hydrolysis of alkyl cyanide provides a useful method to get carboxylic acid having one carbon atom more than the original alkyl halide and alcohols.

By Oxidation of alkyl benzenes - aromatic acids are produced.

CH₃

$$KMnO_a/OH^ (ii) H^*/H_2O$$
 CH_2CH_3
 $KMnO_a/OH^ (ii) H^*/H_2O$
 CH_3
 $COOH$
 $KMnO_a/OH^ (ii) H^*/H_2O$
 $Ethylbenzene$

E.g

 CH_3
 $CH_2 + 6[O]$
 $CH_2 + 6[O]$
 $COOH + 2H_2O$
 $COOH + 2H_2O$

Vaibhav Krishnan (JEE 2009, AIR 22)

6. CHEMICAL REACTIONS

6.1. Acidic Strength

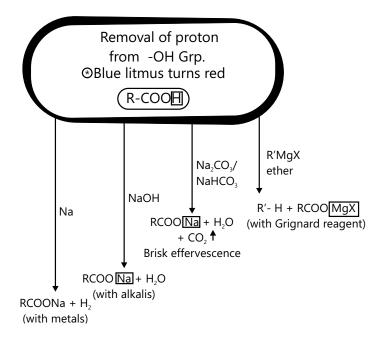
Acidity of carboxylic acids:
$$R-C-O-H \Longrightarrow R-C-O-H + H$$

Exists as

2 Equivalent cannonical strs.

 $R-C-O-H \Longrightarrow R-C-O-H + H$
 $R-C-O-H \Longrightarrow R-C-O-H + H$

Resonance Hybrid


Table 24.3: Comparative acidity of Carboxylic acid with electron withdrawing group vs Carboxylic acid with electron donating group

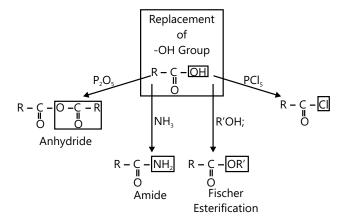
R= Electron withdrawing Group	R= Electron Donating Group	
⇒ Shows -I effect	⇒ Shows +I effect	
⇒ Stabilises anion & increases acidic nature	⇒ Destabilizes anion & decrease acidic nature	
⇒ Example	⇒ Example	
R ← C (⊖ O	R→C ⊖ O	
∴ F-CH ₂ COOH > CI - CH ₂ COOH > Br-CH ₂ COOH OR ← Increasing acid strength — CI CI CI-C-COOH > CI-CH ₂ COOH	HCOOH > CH₃COOH > CH₃-CH₂-COOH COOH	

Tips and Tricks

Acidity of acids is compared by comparing stability of conjugate base

6.2 Reactions Involving Removal of Proton From-OH Group

Flowchart 24.4: n Reaction involving displacement of H from -OH group.


Important Point:

A stronger acid displaces a weaker acid from the salt of the weaker acid.

Example: CH_3COOH (Strongeracid) + $CH_3ONa \rightarrow CH_3COONa + CH_3 - OH$

Example: CH₃COOH (Stronger acid) + NaHCO₃ \rightarrow CH₃COONa + H₂CO₃ (Weaker acid) \rightarrow H₂O +CO₂ \uparrow (lab. test of carboxylic acid)

6.3 Reactions Involving Replacement of -OH Group

Flowchart 24.5: Reaction Involving removal of OH group.

(a) Formation of acid chlorides

PCI₅
Pyridine

R-C-CI + POCI₃ + HCI

PCI₃
Pyridine

R-C-CI + H₃PO₃

Pyridine

SOCI₂
R-C-CI + SO₂ + HCI

Example:

$$O_{A}$$
Benzoic acid

Example:

 O_{A}
 O_{A

(b) Fisher Esterification: Carboxylic acid react with alcohol to form esters through a condensation reaction known as esterification.

General Reaction:

Specific Examples:

Mechanism: (Acid catalysed esterification)

- (i) A reactive electrophile is generated by addition of a proton or a Lewis acid.
- (ii) A tetrahedral intermediate containing two equivalent hydroxyl groups is obtained by the nucleophilic attack of the alcohol .
- (iii) Elimination of these hydroxyl groups after a proton shift (tautomerism) occurs leading to the formation of water and the ester.

The forward reactions give acid catalysed esterification of an acid while the reverse account for the acid catalysed hydrolysis of an ester

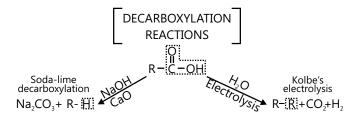
Acid catalysed ester hydrolysis.

$$\begin{array}{c} O \\ \parallel \\ R-C-OR' + H_2O \end{array} \begin{array}{c} O \\ \parallel \\ R-C-OH + R'-OH \end{array}$$

For esterification of an acid we can use an excess of the alcohol and removal of water to prevent the reverse reaction, Hydrolysis of an ester uses a large excess of water and refluxing the ester with dilute aqueous HCl or dilute aqueous H_2SO_4 occurs.

(c) Formation of amides:

In fact, amides cannot be prepared from carboxylic acids and amines unless the ammonium salt is heated strongly to dehydrate it. This is not usually a good method of preparing amides.


(d) Formation of acid anhydride:

$$\begin{array}{c}
O \\
\parallel \\
2R-C-OH \xrightarrow{P_2O_5}
\end{array}$$

$$\begin{array}{c}
O \\
R-C \\
R-C \\
\parallel \\
O
\end{array}$$

$$\begin{array}{c}
O+H_2O \\
R-C \\
\parallel \\
O
\end{array}$$

6.4 Decarboxylation Reactions

(a) Soda-lime decarboxylation:

General reaction:

$$\begin{array}{c} O \\ || \\ R-C-OH \\ \hline \\ Mechanism \\ \hline \\ R-C-OH \\ \hline \\ \hline \\ NaOH + CaO \\ \hline \\ R-C-ONa \\ \hline \\ \hline \\ O \\ \hline \\ \hline \\ CaO \\ \hline \\ A \\ \hline \\ \hline \\ R-C-ONa \\ \hline \\ \hline \\ C-ONa \\ \hline \\ O \\ \hline \\ \hline \\ \hline \\ \hline \\ R \\ \hline \\ Na + NaHCO_3 \\ \hline \\ Carbanion \\ \hline \\ \hline \\ RH + Na_2CO_3 \\ \hline \\ Alkane \\ \hline \end{array}$$

- (i) The stability of carbanion intermediate decides the rate of reaction .
- (ii) Rate of decarboxylation increases with the presence of electron withdrawing group at R-COOH.

Example:

(iii) Presence of some functional groups on aliphatic acids enable the decarboxylation.

$$R-C \xrightarrow{O} CH_2 - CO_2 \longrightarrow R-C \xrightarrow{O} R-C \xrightarrow{O} CH_2$$

$$R-C \xrightarrow{O} R-C \xrightarrow{O} R-C \xrightarrow{O} CH_2$$
Resonance stabilized anion

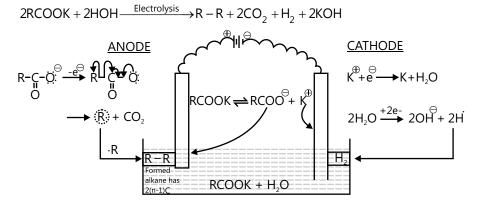

Aliphatic acids that do undergo successful decarboxylation have certain functional groups or double or triple bonds in the α or β positions.

Table 24.4: Decarboxylation product of substituted carboxylic acid

		Acid type	Decarboxylation product
(1)	Malonic	HOOC - C- COOH	HOOC - C-H
(2)	α-Cyano	NC – C – COOH	NC – C– H
(3)	α-Nitro	O ₂ N – C – COOH	O ₂ N-C-H
(4)	α-Aryl	Ar – C– COOH	Ar – C– H

		Acid type	Decarboxylation product
(5)	β-Keto	- C- C- COOH 0	- C- C- H
(6)	α, α, α-Trihalo	X ₃ C-COOH	X ₃ C–H
(7)	β, γ-Unsaturated	-C = C-C-COOH	-C = C-C-H

(b) Kolbe's electrolysis

Example: $2CH_3 - COOK + 2H_2O \xrightarrow{Electrolysis} CH_3CH_3 + 2CO_2 + H_2 + 2KOH$

6.5 HVZ Reaction (Halogenation of Aliphatic Acids and Substituted Acids)

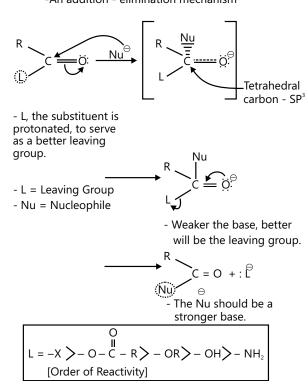
Converts a carboxylic acid possessing an α -hydrogen to an α -halocarboxylic acid when treated with phosphorus and halogen. It is called as Hell-Volhard-Zelinsky reaction where regional regions alpha-halogenation only.

$$\mathsf{CH_3COOH} \xrightarrow{\mathsf{Cl_2},\mathsf{P}} \mathsf{CICH_2COOH} \xrightarrow{\mathsf{Cl_2},\mathsf{P}} \mathsf{CI_2CHCOOH} \xrightarrow{\mathsf{Cl_2},\mathsf{P}} \mathsf{CI_3CCOOH}$$

Mechanism

- (a) Carbonyl oxygen reacts with phosphorus trihalide to form a P-O bond giving the release of a halide anion.
- **(b)** Attack of halide forms an intermediate to release a rearranged acyl halide, an acid and a phosphine oxide.
- (c) Enol tautomer of acyl halide attacks the halogen molecule to form α -halo acyl halide.
- (d) On hydrolysis, α -halocarboxylic acid is formed.

7. CARBOXYLIC ACID DERIVATIVES


Functional derivatives of carboxylic acids

- -Acid chlorides
- -Anhydrides
- -Amides
- -Esters

The above are compounds in which the replacement of -OH of a carboxyl group is done by -CI,-COOR, $-NH_2$,or -OR.

Characteristic reaction of acid derivatives (Nucleophilic acyl substitution):

Nucleophilic acyl substitution
-An addition - elimination mechanism

Examples:

(a)
$$\bigcap_{R-C-Cl + CH_3-C-O} \bigcap_{R-C-Cl + CH_3-C-O} \bigcap_{R-C-C-Cl + CH_3-C-O}$$

(d)
$$O \\ | C_6H_5-C-OCH_3 + NH_3 \\ pk_a = 35$$
 $O \\ | G \\ C_6H_5-C-NH_2 + CH_3O \\ pk_a = 16$

PLANCESS CONCEPTS

Condition for nucleophilic substitution reaction:

- L must be better leaving group than Nu^o, i.e., basicity of Nu should be more than that of L.
- Must be a strong enough nucleophile to attack RCOL.
- Carbonyl carbon must be enough electrophilic to react with

Benzoyl chloride

Nikhil Khandelwal (JEE 2009, AIR 94)

7.1 Acid Halides

Benzoic acid

(a) Methods of preparation Acyl halides

$$R - COOOH = PCI_{5}$$

$$R - COOOH = PCI_{5}$$

$$PCI_{5}$$

$$POCI_{3} + HCI$$

$$SO_{2} + HCI$$

$$H_{3}PO_{3}$$

$$CH_{3} - C - OH + SOCI_{2} \longrightarrow CH_{3} - C - CI + SO_{2} + HCI$$

$$E.g \ Ethanoic \ acid$$

$$Ethanoyl \ chloride$$

(b) Chemical Reactions

Flowchart 24.5: General reactions of Acid halides

(i) Reaction with carboxylic acids

Carboxylic acids with acyl chlorides yield acid anhydrides with the help of a weak organic base, pyridine. Pyridine acts both as a catalyst and a base, which neutralizes the formed hydrogen chloride.

(ii) Reaction with alcohols

O
$$| | | |$$
 $C_6H_5CCI + (CH_3)_3COH$

Benzoyl tert-Butyl
chloride alcohol

O
 $| | |$
 $C_6H_5COC(CH_3)_3$

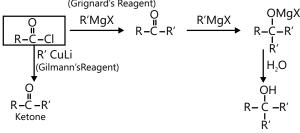
tert-Butyl
benzoate (80%)

(iii) Reaction with ammonia and amines

$$C_6H_5CCI + HN$$

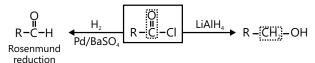
NaOH

 H_2O
 C_6H_5C-N


Benzoyl Piperidine N-Benzoylpiperidine chloride (87-91%)

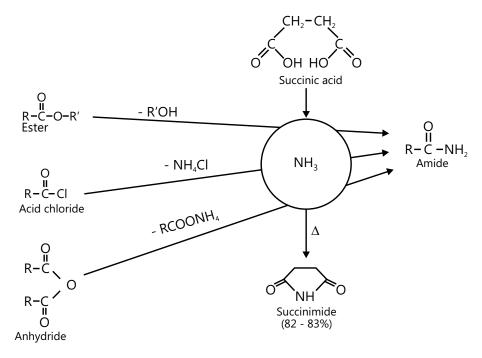
(iv) Hydrolysis

(v) Reaction of acid halide with organometallic


• With Grignard reagent

Reaction with Gilmann reagent (Grignard's Reagent)

(vi) Reduction of acid halides


- By LiAlH_₄
- By H₂/Pd/BaSO₄ (Rosenmund reduction)

7.2 Acid Amides

Methods of preparation of acid amide

(a) With ammonia

Flowchart 24.6: Preparation of amides from acid derivative

(b) With (i) Cyanide (ii) Ammonia salt of acid

General reaction:

$$R-C \equiv N \xrightarrow{\begin{array}{c} H_2O_2 \\ NaOH \\ Or \\ + \\ H_2O \end{array}} \xrightarrow{\begin{array}{c} R \\ R-C-NH_2 \\ \hline \end{array}} \xrightarrow{\Delta} R-C-O-NH_2$$

$$Ammonia \\ salt of acid$$

(i) From ammonia salts of carboxylic acid

$$CH_3COONH_4 \xrightarrow{\Delta} CH_3CONH_2$$

(ii) From cyanides

$$CH_3C \equiv N + H_2O \xrightarrow{\text{dil.}H_2SO_4} CH_3 - CONH_2$$

Example: O O O II

$$H_2C = C - COCH_3 + NH_3 \longrightarrow H_2C = C - CNH_2 + CH_3OH$$
 CH_3 Ammonia CH_3 Methylpropenamide alcohol

Methyl-2-methylpropenoate

2-Methylpropenamide (75%)

Amines, which are substituted derivatives of ammonia, react similarly

Important Chemical Reactions

General reaction:

HOFMANN
REARRANGEMENT
General Reaction
$$R-N=C=O \longleftarrow NaOH + R-C-N + H_2O \longrightarrow R-C-OH$$
Isocyanate
$$R-N=C=O \longleftarrow NaOH + R-C-N + H_2O \longrightarrow R-C-OH$$

$$R-N=C=O \longleftarrow NaOH + R-C-N + H_2O \longrightarrow R-C-OH$$

$$R-N=C-OH$$

$$R-N=C=O \longleftarrow NaOH + H_2O \longrightarrow R-C-OH$$

$$R-N=C-OH$$

$$R$$

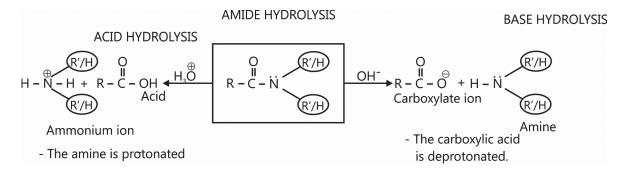
(a) **Hoffmann rearrangement:** In the Hofmann rearrangement an unsubstituted amide is treated with sodium hydroxide and bromine to give a primary amine that has one carbon fewer than starting amide

General reaction:

$$\begin{array}{c}
O \\
\parallel \\
R-C-NH_2 + NaOH + Br_2 & \longrightarrow R-N=C=O \xrightarrow{Hydrolysis} R-NH_2 \\
& isocyanate
\end{array}$$

Mechanism:

The mechanism is divided into 3 parts:-


- (i) Formation of Isocyanate intermediate
- (ii) Formation of carbamic acid
- (iii) Decarboxylation to give Amine

(i) Formation of Isocyanate intermediate

(ii) Formation of carbamic acid

(iii) Decarboxylation to give Amine

(b) Hydrolysis of amides

Example:

Example:

CH₃CNH
$$\longrightarrow$$
 Br $\xrightarrow{\text{KOH}}$ CH₃CO⁻K⁺ + H₂N \longrightarrow Br \longrightarrow N-(4-Bromophenyl) acetamide (p-bromoacetanilide) \longrightarrow Potassium acetate p-Bromoaniline (95%)

7.3 Esters

(a) Methods of Preparation

Examples:

(i)
$$CH_3COOH + C_2H_5OH \xrightarrow{H^+} CH_3COOC_2H_5 + H_2O$$

Acetic acid $C_6H_5COOH + CH_3OH \xrightarrow{H^+} C_6H_5COOCH_3 + H_2O$

(ii)
$$CH_3COCI + C_2H_5OH \xrightarrow{Pyridine} CH_3COOC_2H_5 + HCI$$

Alcohols react with acyl chlorides by nucleophilic acyl substitution to yield esters. These reactions are typically performed in the presence of a weak base such as pyridine.

Here conc. H₂SO₄ is used in the obove reactions which acts as a catalyst & a dehydeating agent.

Example:
$$O_2N$$
 O_2N O_3N O_2N O_3N O_3

Example: $C_6H_5COCI + CH_3CH_2OH \xrightarrow{NaOH} C_6H_5COOCH_2CH_3 + HCI$

(b) Chemical Reactions: The acid and base catalysed ester hydrolysis involves the acyl cleavage of the ester group.

AAc, is Acid catalysed ester hydrolysis by acyl cleavage through bimolecular mechanism.

BAc₂ is Base catalysed ester hydrolysis by acyl cleavage through bimolecular mechanism.

Table 24.5: Mechanism of Acid catalysed and Base catalysed ester hydrolysis

Acid Catalysis	Acyl Cleavage	AAc ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			$ \frac{\text{slow.}}{\text{H}_2\text{O}} R - \text{C} - \overset{\oplus}{\text{O}} \text{H}_2 $ $ \overset{\circ}{\text{O}} $ $ \frac{-\text{H}^{\oplus}}{\text{R}} R - \overset{\oplus}{\text{C}} - \overset{\oplus}{\text{O}} \text{H} $ $ \overset{\circ}{\text{O}} $ $ \overset{\circ}{\text{O}} $
			—H⊕ R−C−OH ∷O
Base Catalysis	Acyl Cleavage	BAc ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			+R'OH

(i) Acid catalysed hydrolysis of ester (AAc₂):

$$\begin{array}{c}
O \\
\parallel \\
CH_3-C-O-R+H_2O & \xrightarrow{H^{\oplus}} CH_3COOH+ROH
\end{array}$$

The yield of products would be raised by adding excess of water.

$$\begin{array}{c}
O \\
\parallel \\
CH_3-C-OR + H_2O \text{ (excess)}
\end{array}$$

$$\begin{array}{c}
H^{\oplus} \\
\longrightarrow CH_3COOH + ROH
\end{array}$$

(ii) Base-Promoted Hydrolysis of Esters : Saponification (BAc₂):

The base catalysed hydrolysis is also known as Saponification.

$$\begin{array}{c} O \\ \parallel \\ RC\text{-}OR' + \text{NaOH} \end{array} \xrightarrow{\begin{array}{c} H_2O \\ \end{array}} \begin{array}{c} O \\ \parallel \\ RC\text{-}O^-\text{Na}^+ + R'OH \\ \end{array}$$

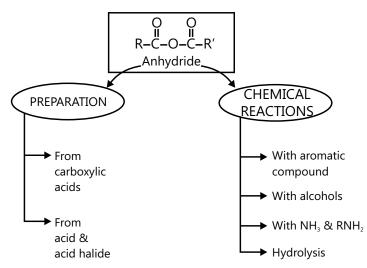
$$\begin{array}{c} \text{Sodium} \\ \text{carboxylate} \end{array} \xrightarrow{\begin{array}{c} Alcoholomorphical \\ \end{array}} \begin{array}{c} O \\ \parallel \\ Alcoholomorphical \\ \end{array}$$

The unreactive negatively charged carboxylate ion does not undergo nucleophilic substitution. The irreversible nature of this reaction, i.e., the base-promoted hydrolysis of an ester is seen over here. The mechanism for this reaction also involves a nucleophilic addition-elimination at the acyl carbon.

Mechanism:

$$H_3C-CH_2$$
 $C=O+NaOH$
 H_3C-CH_2
 $C=O+H_3C-CH_2$
 $C=O+H_3$
 $C=O+H$

The mechanism is studied with the help of isotopically labelled esters. Ethyl propionate consisting of labelled ¹⁸O in the ether-type oxygen of the ester undergoes hydrolysis with aqueous NaOH wherein the ¹⁸O is observed to be contained in the produced ethanol only.


The result would have been different if it was an alkyl cleavage instead of the acyl one. But attack at the alkyl is not possible.

Such kind of attack of the nucleophile at the alkyl carbon occurs rarely in the case of carboxylic acid esters, but such attacks are preferred in case of esters of sulfonic acids (e.g. tosylates and mesylates)

$$H_3C-CH_2$$
 $C=O+OH$
 H_3C-CH_2
 $C=O+H_3C-CH_2-OH$
 $H_3C-H_2C-O_{18}$
 $H_3C-CH_2-C=O^{18}$
 $C=O+H_3C-CH_2-OH$
 $C=O+H_3C-CH_2-$

Alkyl attack is seen in cases of alkyl sulfonates.

7.4 Acid anhydrides

Flowchart 24.6: Preparation and reactions of anhydride

(a) Method of Preparation

(i) From carboxylic acids

$$R - C OH OH A P2O5 R - C OH OH ANHYDRIDE$$

Example:

(i)
$$CH_2$$
- $COOH$

$$CH_2$$
- $COOH$

$$CH_2$$
- $COOH$

$$CH_2$$

(ii) From acid and acid halide

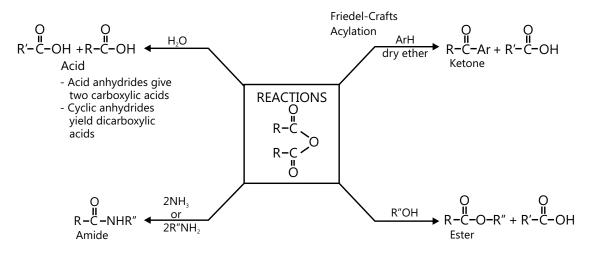
$$R - C$$

$$R' - C$$

Example:

$$CH_3 - C$$

$$H_3C - C$$


$$OH_3 - C$$

$$CH_3 - C$$

$$OH_3 - C$$

$$CH_3 - C$$

(b) Chemical Reaction

Flowchart 24.7: Important reaction of anhydride

(i) Reaction with aromatic compounds (Friedel-Crafts acylation)

Example:

(ii) Reaction with alcohols: Esters are formed when acid anhydrides react with alcohols in presence of pyridine or a catalytic acid.

The below given example shows the incorporation of only one acyl group in the ester while the other forms an acetic acid molecule.

Example:

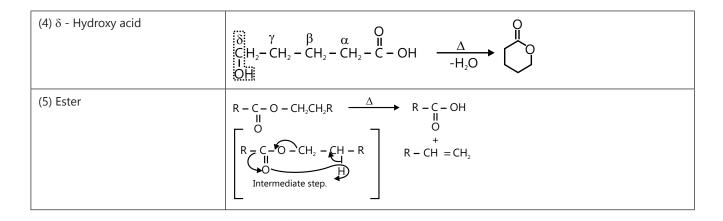
O O
$$\|\cdot\|$$
 CH₃COCCH₃ + HOCHCH₂CH₃ $\xrightarrow{\text{H}_2SO_4}$ CH₃COCHCH₂CH₃ + CH₃COOH Acetic CH₃ acid sec-Butyl alcohol acetate (60%)

(iii) **Reaction with ammonia and amines:** Amides are formed when acid anhydride reacts with 2 molar equivalents of ammonia or amines.

The below given example shows the incorporation of only one acyl group into the amide and the other forms the amine salt of acetic acid.

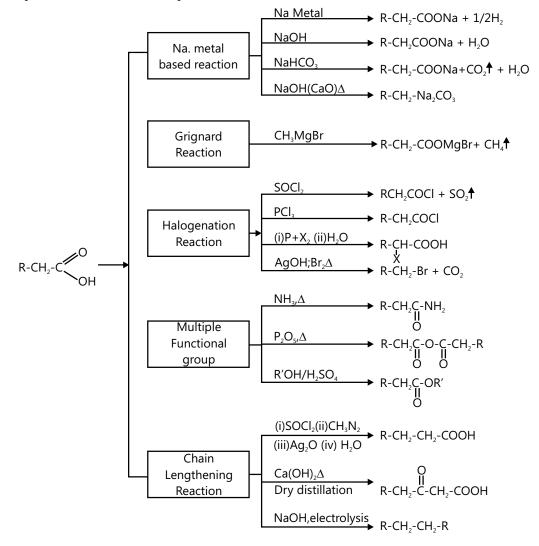
$$CH_3COCCH_3 + H_2N \longrightarrow CH(CH_3)_2 \longrightarrow CH_3CNH \longrightarrow CH(CH_3)$$
Acetic p-Isopropylaniline p-Isopropylacetanilide (98%) anhydride

(iv) Hydrolysis: Carboxylic acids are formed when acid anhydrides react with water. Cyclic anhydrides hydrolyse to dicarboxylic acids.

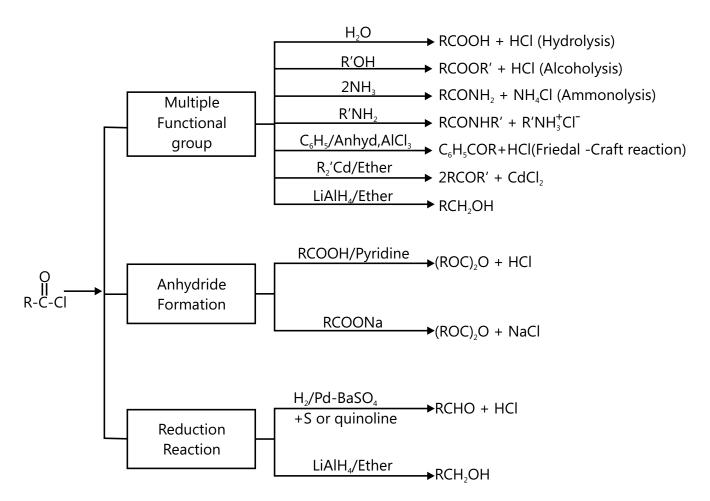

$$\begin{array}{c} O \\ O \\ O \\ O \\ \end{array} + \begin{array}{c} H_2O \\ \\ Water \\ \end{array} \\ \begin{array}{c} O \\ COH \\ \\ O \\ \end{array} \\ \begin{array}{c} O \\ COH \\ \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ \\ O \\ \end{array} \\ \begin{array}{c} O \\ \\ O \\ \end{array} \\ \begin{array}{c} O \\ \\ O \\ \end{array} \\ \begin{array}{c} O \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\$$

8. HEATING EFFECTS

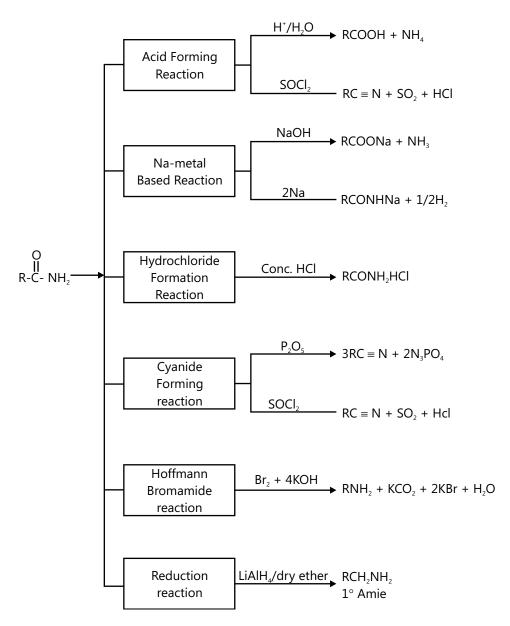
Dicarboxylic acid


Table 24.8: Heating effects on hydroxy acids & ester

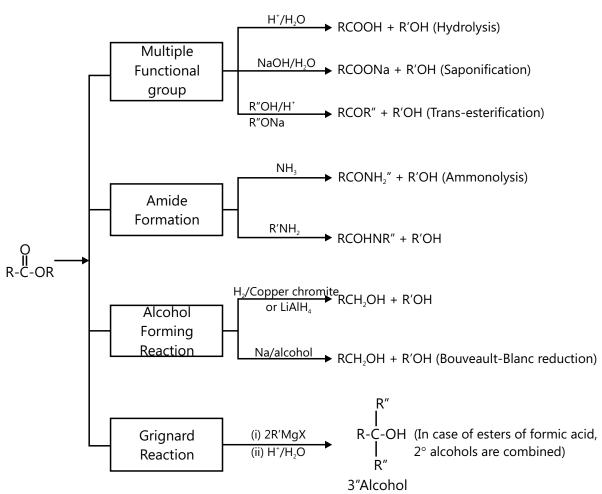
(1) α - Hydroxy acid	OH HO A OF
(2) β - Hydroxy acid	$\begin{array}{c c} & \alpha & \Pi \\ CH_2-CH_2-C-OH & \xrightarrow{\Delta} CH_2 = CH-C-OH \\ \hline OH & Unstability of 4/8 - membered rings lead to \\ & the formation of a,b - unsaturated acids \\ \end{array}$
(3) γ - Hydroxy acid	$ \begin{array}{c} O \\ C \\ H_2 - CH_2 - CH_2 - C - OH \\ OH \end{array} $


POINTS TO REMEMBER

(a) Summary of Reactions of Carboxylic Acids


(b) Summary of Reactions of Acid Halides

Reaction of Acid Chloride


(c) Summary of Reactions of Amides

Reaction of amide

(d) Summary of Reactions of Esters

Reaction of Esters

Solved Examples

JEE Main/Boards

Example 1: Select the correct statement about the following compounds I, II, II.

- (A) (I) decarboxylates faster than (II) on heating.
- (B) Only *CO₂ is eliminated on heating of compound(I).
- (C) Compound (I) eliminates a mixture of CO₂ and *CO₂ on heating.
- (D) The rate of decarboxylation of (II) is faster than (III).

Sol 1: (A) Nature of functional group also has an influence on rate of decarboxylation. Presence of Electron Withdrawing Group-Increases its rate of decarboxylation.

rate of decarboxylation : III > I > II

Example 2: Which of these represents correct reaction?

(A)
$$H-C-O \xrightarrow{Conc.NaOD} DCOO^- + DCH_2OD$$
 II
 O

(C)
$$CH_3 - CH_3 - CH_$$

(D)
$$CH_3-C-OH + CH_3-CH_2-C-OH \xrightarrow{Conc.H_2SO_4} CH_3-CH_2-C-O-C-CH_3 \\ C_2H_5 O C_2H_5$$

Cannizzaro reaction

Aldol + Cannizzaro reaction

(C)
$$CH_3 - CH_3 - C - OH \xrightarrow{P+Br_2} CH_3 - CH - COOH \\ II \\ O \\ Br$$

HVZ reaction

(D)
$$CH_3 - C - OH + CH_3 - CH_2 - C - OH \xrightarrow{Conc.H_2SO_4} CH_3 - CH_2 - C - C - CH_3$$

 C_2H_5 O C_2H_5

(Esterification reaction)

Example 3:Final product is:

$$(A) \bigcirc (B) \bigcirc (B) \bigcirc (B) \bigcirc (A) \bigcirc (A)$$

Sol 3: (B)

Example 4: Identify (A), (B), (C) and (D).

$$\begin{array}{c} C_{3}H_{s}CI \text{ (A)} & \xrightarrow{Mg/dry \text{ ether}} \bullet \text{(B)} & \xrightarrow{\text{(i) }CO_{2}} \bullet \text{(C)} \bullet \xrightarrow{\text{[O]}} C_{8}H_{12} \text{ (D)} \\ \text{Saturated} & \end{array}$$

Sol: First step is preparation of gringnard reagent Second is reaction of G. R. with CO₂ to form an acid

$$(A) = CI; (B) = MgCI;$$

$$(C) = COOH; (D) = CH = CH$$

Example 5: Give the reaction of preparation of propanoic acid from ethyl alcohol.

Sol:
$$CH_3-CH_2OH \xrightarrow{PCl_5} CH_3-CH_2-CI$$
 $KCN \xrightarrow{Nucleophilic substitution} CH_3-CH_2-CN$
 $H_2O/H^+ \longrightarrow CH_3-CH_2-COOH$

Propanoic acid

Example 6: Identify (A), (B) and (C).

$$C_3H_6CI_2$$
 (A) \xrightarrow{KCN} (B) $\xrightarrow{H_2O/H^+}$ (C) $\xrightarrow{\Delta}$

2-Methylpropanoic acid

Sol: First step is Nocleophilic substitution (CN⁻) followed by Hydrolysis. (Both Cl is replaced by CN)

It produces diacarboxylic acid which on mono decarboxylation produces 2-methyl propanoic acid.

$$CH_{3}-C-CH_{3} \xrightarrow{\oplus \ominus} CH_{3}-C-CH_{3} \xrightarrow{H_{2}O/H} Hydrolysis$$

$$COOH$$

$$CH_{3}-C-CH_{3} \xrightarrow{\Delta} 2-Methylpropanoic acid$$

$$COOH$$

JEE Advanced/Boards

Example 1: Predict A, B, C, D and E.

Acid(A)
$$\xrightarrow{\Delta}$$
 B $\xrightarrow{\text{Mesitylene/AlCl}_3}$ C + CH₃COOH $\xrightarrow{\text{Zn-Hg/Conc. HCl}}$ (D)

Sol 1: (A) = CH_3COOH ;

(B) =
$$CH_3 - C - O - C - CH_3$$

O O

(c) =
$$H_3C$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

(D) =
$$H_3C$$

$$CH_3$$

$$CH_2CH_3$$

$$CH_3$$

Example 2: Find the rate of soda-lime decarboxylation.

Sol 2: Rate of soda-lime decarboxylation. I > II > III > IV > V

Presence of Electron withdrawing group Increases the rate of decarboxylation.

Presence of Eelectron donating group. decreases the rate of decarboxylation.

-NO_{2′} -Cl⁻ Electron withdrawing group thus rate of decarboxylation increases

-CH₃, -OCH₃ Electron donating group and hence rate decreases.

Example 3: Identify (A), (B) and (C).

$$CH_3 - CH_2 - COOH \xrightarrow{Br_2(1 \text{ eqv})/P} (A) \xrightarrow{KCN} (B)$$

$$\xrightarrow{H_2O/H'/\Delta} (C)$$

(C) CH₃-CH(COOH)₂

Example 4: Write the structures of (A) C₃H₇NO which on acid hydrolysis gives acid (B) and amine (C). Acid (B) gives (+)ve silver-mirror test.

Sol: Since it gives positive silver mirror Test, It has to be an aldehyde (-CHO)

$$C_3H_7NO-CHO=C_2H_6N$$
,

Now C₂H₆N can be either (CH₃)₂N or CH₃CH₂-NH group. Thus A can be.

Example 5: Which are correct against property mentioned?

(A)
$$CH_3COCI > (CH_3CO)_2O > CH_3COOEt > CH_3CONH_2$$

(Rate of hydrolysis)

(B)
$$CH_3-CH_2-COOH > CH_2-CH-COOH > CH_3 \xrightarrow{CH_3} COOH$$

 CH_3 CH_3

(Rate of esterification)

(Rate of esterification)

O O
$$\parallel$$
 (D) CH₃-C-COOH > CH₃-C-CH₂-COOH > Ph-CH₂-COOH (Rate of decarboxylation)

Sol 5: (A, B) Self explanatory

Example 6: Match the product of column II with the reaction of column I.

Column I			Column II		
(A)	HOOC 18 $OOOH$ A	(p)	Ester with O ¹⁸		
(B)	OH COOH \triangle	(q)	A β-diketone with –¹8OH group		
(C)	18 OH COOH	(r)	A cyclic anhydride with –18OH group		
(D)	HOOC 18 OH O/A	(s)	A cyclic ester without O ¹⁸		

Sol: $A \rightarrow r$; $B \rightarrow s$; $C \rightarrow p$; $D \rightarrow q$

Self explanatory

JEE Main/Boards

Exercise 1

Q.1 Two isomeric carboxylic acids H and I, $C_9H_8O_2$, react with H_2 /Pd giving compounds $C_9H_{10}O_2$. H gives a resolvable product and I gives a non-resolvable product. Both isomers can be oxidized to C_6H_6COOH .

Give the structure of H and I.

Q.2 Identify the products (A), (B), (C) and (D) in the following sequence:

$$C_{15}H_{31}COOH \xrightarrow{\text{LiAlH}_4} (A) \xrightarrow{\text{HCI}} (B) \xrightarrow{(i) \text{Mg, ether}} (C) \xrightarrow{\text{KMnO}_4 + \text{conc. H}_2SO_4}$$

Q.3 A neutral liquid (Y) has the molecular formula $C_6H_{12}O_6$. On hydrolysis it yields an acid (A) and an alcohol (B). Compound (A) has a neutralization equivalent of 60. Alcohol (B) is not oxidized by acidified KMnO₄, but gives cloudiness immediately with Lucas reagent. What are (Y), (A) and (B) ?

Q.4 Esterification does not take place in the presence of ethyl alcohol and excess of concentrated H_2SO_4 at 170°C. Explain.

Q.5 Why does carboxylic acid functions as bases though weak ones?

Q.6 Which ketone of the formula $C_5H_{10}O$ will yield an acid on halo form reaction?

Q.7 Highly branched carboxylic acids are less acidic than unbranched acids. Why?

Q.8 A carboxylic acid does not form an oxime or phenyl hydrazone. Why?

Q.9 Formic acid reduce Tollen's reagent. Why?

Q.10 The K_2 for fumaric acid is greater than maleic acid. Why.

Q.11 Identify the final product in the following sequence of reaction.

Q.12 What is (Z) in the following sequence of reactions?

$$HC \equiv CH \frac{(i) \ 2NaNH_2}{(ii) \ 2CH_3I} \rightarrow (X) \frac{HgSO_4}{H_2SO_4} \rightarrow (Y)$$

$$(Z) \stackrel{(i)NaOH/Br_2}{(ii)H.O^-}$$

Q.13 Acetic acid has a molecular weight of 120 in benzene solution why?

Q.14 Place the following in the correct order of acidity

(i) CH≡C-COOH;

(ii) CH₂=CH-COOH;

(iii) CH₃CH₂COOH

Q.15 Phenol is a weaker acid than acetic acid why?

Q.16 Which acid derivative show most vigorous alkaline hydrolysis?

Q.17 59 g of amide obtained from the carboxylic acid RCOOH, on heating with alkali gave 17g of ammonia. What is the formula of acid?

Q.18 Which carboxylic acid (X) of equivalent mass of 52g / eq loses CO₂ when heated to give an acid (Y) of equivalent mass of 60g/eq.

Q.19 Which of the reagent reacts with $C_6H_5CH_2CONH_2$ to form $C_6H_5CH_2CN$.

Q.20 Consider the following ester -

(i) MeCH₂COOH

(ii) Me₂CHCOOH

(iii) Me,CCOOH

(iv) Et, CCOOH

Correct order of the rate of esterification

Q.21 An organic compound (A) on treatment with ethyl alcohol gives a carboxylic acid (B) and compound (C). Hydrolysis of (C) under acidic conditions gives (B) and (D). Oxidation of (D) with $KMnO_4$ also gives (B). (B) on heating with $Ca(OH)_2$ gives (E) (Molecular formula C_3H_6O) (E) does not gives Tollen's test and does not reduce Fehling solution but forms 2, 4-dinitrophenylhydrazone. Identify (A) to (E).

Q.22 Two mole of an ester (A) are condensed in presence of sodium ethoxide to give a β -ketoester (B) and ethanol. On heating in an acidic solution(B) gives ethanol and β -ketoacid(C). On decarboxylation (C) gives 3-pentanone. Identify (A), (B) and (C) with reactions.

Q.23 Compound(A)($C_6H_{12}O_2$) on reaction with LiAlH₄ yields two compounds (B) and (C). The compound (B) on oxidation gave (D) 2 moles of (D) on treatment with alkali (aqueous) and subsequent heating furnished (E). The later on catalytic hydrogenation gave (C). The compound (D) was oxidized further to give (F) which was found to be a monobasic acid (m.wt.60.0). Deduce structures of (A) to (E).

Q.24 Compound (A) $C_5H_8O_2$ liberated CO_2 on reaction with sodium bicarbonate. It exists in two forms neither of which is optically active. It yielded compound (B). $C_5H_{10}O_2$ on hydrogenation. Compound (B) can be separated into enantimorphs. Write structures of (A) and (B).

Q.25 The sodium salt of a carboxylic acid, (A) was produced by passing a gas (B) into aqueous solution of caustic alkali at an elevated temperature and pressure (A) on heating in presence of sodium hydroxide followed by treatment with sulphuric acid gave a dibasic acid (C). A sample of 0.4g of (C) on combustion gave 0.08 g of H₂O and 0.39 g of CO₂. The silver salt of the acid, weighing 1.0 g, on ignition yielded 0.71 g of Ag as residue. Identify (A), (B) and (C).

Q.26 An organic compound (A) on treatment with acetic acid in presence of sulphuric acid produces an ester (B). (A) on mild oxidation gives (C). (C) with 50% KOH followed by acidification with dilute HCl generates (A) and (D). (D) with PCl₅ followed by reaction with ammonia gives (E). (E) on dehydration produces hydrocyanic acid. Identify (A) to (E).

Q.27 Acetophenone on reaction with hydroxylamine-hydrochloride can produce two isomeric oximes. Write structures of the oximes.

Q.28 An acidic compound (A), C_4H_8O loses its optical activity on strong heating yielding (B). $C_4H_6O_2$ which reacts readily with KMnO₄. (B) forms a derivative (C) with SOCl₂, which on reaction with (CH₃)₂NH gives (D). The compound (A) on oxidation with dilute chromic acid gives an unstable compound (E) which decarboxylates readily to give (F), C_3H_6O . The compound (F) gives a hydrocarbon (G) on treatment with amalgamated Zn and HCl. Give structures of (A) to (G) with proper reasoning.

Q.29 An organic acid (A), $C_sH_{10}O_2$ reacts with Br_2 in the presence of phosphorus to give (B). Compound (B) contains an asymmetric carbon atom and yields (C) on dehydrobromination. Compound (C) does not show geometric Isomerism and on decarboxylation gives an alkene (D) which on ozonolysis gives (E) and (F). Compound (E) gives a positive Schiff's test but (F) does not. Give structures of (A) to (F) with reasons.

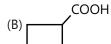
Q.30 An liquid (X) having molecular formula C_6 H $_{12}O_2$ is hydrolysed with water in presence of an acid to give a carboxylic acid (Y) and an alcohol (Z). Oxidation of (Z) with chromic acid gives (Y). What are (X), (Y) and (Z) ?

Exercise 2

Single Correct Choice Type

Q.1
$$\xrightarrow[]{\text{EtO}^{\ominus}}$$
 $\xrightarrow[]{\text{H}_3O^{\oplus}}$ $\xrightarrow[]{\text{HCI}}$ $\xrightarrow[]{\text{HCI}}$ (X)

Product (X) of above reaction is:



$$(D)$$
 (D)
 (D)

Q.2 Correct order of reactivity of following acid derivatives is

- (I) MeCOCI
- (II) MeCON₃
- (III) MeCOOCOMe
- (A) | > || > |||
- (B) II > I > III
- (C) | > | | > | |
- (D) || > ||| > |

Q.3 $CH_2(COOEt)_2 + (CH_2)_3 \xrightarrow{NaOEt} I \xrightarrow{H_3O^+} IIis$:

Q.4
$$H_3C$$
 OH $\xrightarrow{\Delta}$ X, X will be

(A) H₃C COOH

$$_{\rm B)}$$
 $_{\rm H_3C}$

(C) CH₃ O

(D) None

Q.5 $Me_3C - C - O - CMe_3 \xrightarrow{dil.H_2SO_4} Product$

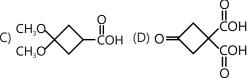
of this reaction and the mechanism is:

(A)
$$Me_3C - C - OH + Me_3C - OH$$
, A_{AC^1}

$$\begin{array}{c} & O^{18} \\ \parallel \\ (B) \ \ \mbox{Me}_{3}\mbox{C} - \ \mbox{C} - \mbox{OH} + \mbox{Me}_{3}\mbox{C} - \mbox{OH}, \mbox{A}_{\mbox{AL}^{1}} \end{array}$$

(C)
$$Me_3C - C - OH + Me_3C - OH$$
, A_{AC^2}

(D)
$$Me_3C - C - OH + Me_3C - OH, A_{AL^2}$$


Q.6 Guess the product

 $CH_3CH_2CONH_2 \xrightarrow{PCl_5} ?$

- (A) CH₂CH₂-CN
- (B) CH₃CH₂COCI
- (C) CH₃CCl₂CONH₂
- (D) CH₃CH₂CONHCl

Q.7 End product due to hydrolysis of (A) and subsequent heating is:

(A) O=

Q.8 Me $-C-O-CH_2+CH_2-NH_3 \xrightarrow{NaOH} Q_Q$ is?

(D) MeCOONa + HOCH₂CH₂NH₂

Q.9 Which of the following give two alcohols when it reacts with $LiAlH_4$.

(D) All

Q.10 In which of the following reaction CO₂ gas will be evolved.

$$(A) \bigcirc CO_2H \longrightarrow CO_2H$$

(B) Ph-C-CH₂-C-OH
$$\longrightarrow$$

$$(C) \begin{array}{|c|c|}\hline CO_2H \\\hline\hline\hline NaOH CO_3\\\hline\hline \Delta \\\hline\end{array}$$

(D) All

Q.11 Which of the following pair will form same osazone when it reacts phenyl hydrazine

D-allose D-glucose

D-glucose D-mannose

CHO

CHO

D-glucose D-gulose

D-allose D-glucose

Q.12

O
$$\parallel Ph - C - O - H + HO^{18}CH(CH_3)_2 \xrightarrow{HCI} (X)$$

Major product (X) is:

Q.13 COOEt
$$\xrightarrow{\text{EtO Na}} (P)$$

$$COOEt$$

Select incorrect statement

- (A) P can turn blue litmus red
- (B) P can not give effervescence of CO₂ with NaOH₃.
- (C) It is Dieckmann condensation
- (D) Product is a bicylo compound

Q.14
$$\longrightarrow$$
 A $\xrightarrow{\text{EtO}^{\ominus}}$ A $\xrightarrow{\text{H}_3O^{\oplus}}$ B $\xrightarrow{\text{Zn(Hq)}}$ C, C is C is C is C is

(A)
$$(B)$$
 (B) (CH_2OH)

$$(C) \qquad \qquad (D) \qquad \bigvee_{\substack{I \\ CH_3}}$$

Q.15
$$\longrightarrow$$
 $A \xrightarrow{\text{O}} A \xrightarrow{\text{(i) } CH_3MgBr} B$

$$C \xrightarrow{\text{(i) } I_2 + Ca(OH)_2} A \xrightarrow{\text{(ii) } I_2 + Ca(OH)_2} B$$

Product is:

$$(A) \longrightarrow C-CH_3 \qquad (B) \longrightarrow C-OH$$

$$(C) \longrightarrow C \longrightarrow (D) \longrightarrow C-CH_2CH_2$$

Q.16 O-C-CH₃

$$A|C|_3 A \xrightarrow{(i) I_2 + OH} B \xrightarrow{Br_2 + H_2O} C$$

'C' form white precipitate compound 'C' is:

Q.17 Which of the following esters cannot undergo self Claisen condensation

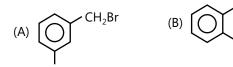
- (A) CH₂CH₂CH₂CO₂C₂H₅
- (B) $C_6H_5CO_2C_2H_5$
- (C) $C_6H_5CH_2CO_2C_2H_5$
- (D) CH₂CH₂CO₂C₂H₅

- Q.19 Method to distinguish RNH, & R,NH
- (A) NaNO₂/HCl
- (B) Hoffmann's mustard oil reaction
- (C) Hinsberg test
- (D) All of the above

Previous Years' Questions

- Q.1 When propionic acid is treated with aqueous sodium bicarbonate, CO₂ is liberated. The C of CO₂ comes from
- (A) Methyl group
- (B) Carboxylic acid group
- (C) Methylene group (D) Bicarbonate group
- Q.2 Benzoyl chloride is prepared from benzoic acid by (2000)
- (A) Cl_2 , hv (B) SO_2Cl_2 (C) $SOCl_2$ (D) Cl_2 , H_2O
- Q.3 The product of acid hydrolysis of P and Q can be distinguished by (2003)

$$P = H_2C = CH_3, Q = COCCH_3$$


$$CH_3 OCOCH_3$$

- (A) Lucas reagent
- (B) 2,4-DNP
- (C) Fehling's solution (D) NaHSO,
- **Q.4** Ethyl ester $\xrightarrow{\text{CH}_3\text{MgBr}}$ P, the product 'P' will be (2003)

- (C) H_5C_2 C_2H_5 (D) H_5C_2 C_2H_5 OH
- Q.5 An enantiomerically pure acid is treated with racemic mixture of an alcohol having one chiral carbon. The ester formed will be (2003)
- (A) Optically active mixture
- (B) Pure enantiomer
- (C) Meso compound
- (D) Racemic mixture
- Q.6 Benzamide on treatment with POCI, gives: (2004)
- (A) Aniline
- (B) Benzonitrile
- (C) Chlorobenzene
- (D) Benzyl amine

- Q.7 Statement-I: Acetic acid does not undergo haloform reaction.
- **Statement-II:** Acetic acid has no alpha hydrogen. (1998)
- Q.8 Statement-I: p-hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid.
- **Statement-II:** o-hydroxybenzoic acid has intramolecular hydrogen bonding. (2007)
- Q.9 Hydrolysis of an ester in presence of a dilute acid is known as saponification.
- **Q.10** The boiling point of propanoic acid is less than that of n-butyl alcohol, an alcohol of comparable molecular weight. (1991)
- Q.11 A liquid was mixed with ethanol and a drop of concentrated H₂SO₄ was added. A compound with a fruity smell was formed. The liquid was: (2009)
- (A) CH₂OH
- (B) HCHO
- (C) CH₂COCH₂
- (D) CH₃COOH
- **Q.12** Sodium ethoxide has reacted with ethanoyl chloride. The compound that is produced in the above reaction is: (2011)
- (A) 2-Butanone
- (B) Ethyl chloride
- (C) Ethyl ethanoate
- (D) Diethyl ether
- Q.13 The strongest acid amongst the following compounds is: (2011)
- (A) HCOOH
- (B) CH, CH, CH(CI)CO, H
- (C) CICH, CH, CH, COOH
- (D) CH₂COOH
- Q.14 Which of the following reagents may be used to distinguish between phenol and benzoic acid? (2011)
- (A) Tollen's reagent
- (B) Molisch reagent
- (C) Neutral FeCl,
- (D) Aqueous NaOH
- Q.15 A compound with molecular mass 180 is acylated with CH₃COCI to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is: (2013)
- (A) 2
- (B) 5
- (C) 4
- (D) 6

Q.16 Compound (A), C_8H_9Br , gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), $C_8H_6O_4$. (B) easily forms anhydride on heating. Identify the compound (A). (2013)

$$(C) \begin{picture}(C) \line(C) \line$$

Q.17 An organic compound A upon reacting with NH₃ gives B. On heating B gives C. C in presence of KOH reacts with Br₂ to given CH₃CH₂NH₂. A is: (2013)

(C)
$$CH_3 - CH - COOH$$
 (D) CH_3CH_2COOH CH_3

Q.18 Sodium phenoxide when heated with CO_2 under pressure at 125°C yields a product which on acetylation produces C.

ONa +
$$CO_2 \xrightarrow{125^{\circ}} B \xrightarrow{H^+} Ac_2O > C$$

The major product C would be

$$(C) \begin{array}{c} OH \\ COOCH_3 \end{array} (D) \begin{array}{c} OCOCH_3 \\ COOH \end{array}$$

Q.19 In the reaction,

$$CH_3COOH \xrightarrow{LiAIH_4} A \xrightarrow{PCI_5} B \xrightarrow{Alc.KOH} C$$
,

the product C is

(2014)

- (A) Acetaldehyde
- (B) Acetylene
- (C) Ethylene
- (D) Acetyl chloride

Q.20 In the following sequence of reactions:

Toluene
$$\xrightarrow{\text{KMnO}_4}$$
 A $\xrightarrow{\text{SICI}_2}$ B $\xrightarrow{\text{H}_2/\text{Pd}}$ C

the product C is:

(2015)

- (A) C₆H₅COOH
- (B) (B) $C_6H_5CH_3$
- (C) (C) $C_6H_5CH_2OH$
- (D) C₆H₅CHO

Q.21 In the Hofmann bromamide degradation reaction, the number of moles of NaOH and Br₂ used per mole of amine produced are: (2016)

- (A) Four moles of NaOH and two moles of Br,
- (B) Two moles of NaOH and two moles of Br,
- (C) Four moles of NaOH and one mole of Br₂
- (D) One mole of NaOH and one mole of Br₂

JEE Advanced/Boards

Exercise 1

- **Q.1** (i) Give the structures of the four optically-active isomers of $C_4H_8O_3$ (D through G) that evolve CO_2 with aq. NaHCO $_3$.
- (ii) Find the structure of (D), the isomer that reacts with $LiAlH_A$ to give an achiral product.
- (iii) Give chemical reactions to distinguish among (E), (F) and (G).
- **Q.2** Complete the following equation:

$$\begin{array}{c} CH_{3} \\ I \\ H_{3}C-C=CH_{2} \end{array} \xrightarrow{HCI} \begin{array}{c} \frac{Mg}{Ether} ? \xrightarrow{CO_{2}} ? \xrightarrow{H_{2}O/H^{+}} ? \end{array}$$

Q.3 Give structures of compounds:

Acetylene +CH₃MgBr
$$\xrightarrow{\text{CCH}_4}$$
(G) $\xrightarrow{\text{CO}_2}$ (H)
(C₃H₄O₃)(J) $\xrightarrow{\text{H}_2\text{O},\text{H}_2\text{SO}_4}$ (C₃H₂O₂)(I) $\xrightarrow{\text{H}_2\text{O}}$
| KMnO₄ CH₂(COOH)₂

- **Q.4** An ester $C_6H_{12}O_2$ was hydrolysed with water an acid (A), and an alcohol (B), were obtained. Oxidation of (B) with chromic acid produced A. What is the structure of the original ester? Write equations for all the reactions.
- Q.5 Complete the following equation:

$$RCO_2H \xrightarrow{SOCl_2} ? \xrightarrow{NaN_2} ? \xrightarrow{D} ? \xrightarrow{Hydrolysis} ?$$

- **Q.6** Acid halides of formic acid are unstable. Why?
- **Q.7** What is the product of the following reaction?

$$H_3C$$
 $C=C$ CHO (i) Silver oxide in aq. base (ii) H^{\oplus} ?

- 2-Methyl-2-pentenal
- **Q.8** An unsaturated acid (A) of molecular formula $C_5H_6O_4$ eliminates CO_2 easily and gives another unsaturated acid (B) of formula $C_4H_6O_2$. By saturation with H_2/Pt (B) gives butanoic acid. Neither (A) nor (B) shows cis-trans isomerism. What are (A) and (B)?

- **Q.9** An organic compound 'A' on treatment with ethyl alcohol gives a carboxylic acid 'B' and compound 'C' Hydrolysis of 'C' under acidic conditions gives 'B' and 'D' Oxidation of 'D' with $KMnO_4$ also gives 'B' . 'B' on heating with $Ca(OH)_2$ gives 'E'(molecular formula C_3H_6O). 'E' doesnot give Tollen's test and does not reduce Fehling's solution but forms a 2,4-dinitrophenyl hydrazine. Identify 'A. B' C' 'D' and 'E'.
- **Q.10** Two moles of an ester (A) are condensed in the presence of sodium ethoxide to give a β -keto ester (B) and ethanol. On heating in an acidic solution (B) gives ethanol and β -keto acid (C). On decarboxylation (C) gives 3-pentanone. Identify (A), (B) and (C) with proper reasoning. Name the reaction involved in the conversion of (A) to (B).
- Q.11 An alkali salt of palmitic acid is known as?
- **Q.12** Acid do not react with sodium bisulphite though O \parallel they have -C- group. Why ?
- Q.13 In the reaction sequence

$$X \xrightarrow{Ca(OH)_2} Y \xrightarrow{Dry} Acetone \xrightarrow{Conc.} ZOO_4 ZOO_4$$

X, Y and Z are?

Q.14 CH₃CH₂COOH
$$\xrightarrow{[O]}$$
 X, Product X is-

- **Q.15** Which of the reagent attack only the carbonyl group of a fatty acid?
- Q.16 In the sequence

$$\begin{array}{ccc} CH & CH_3 & CH_3 \\ \parallel & \mid & 3 & \mid & 3 \\ CH & \xrightarrow{X} CHO & \xrightarrow{Y} COOH & \xrightarrow{Z} CH_4 \end{array}$$

The reagent X, Y and Z are:

Q.17 In the reaction sequence

$$X \xrightarrow{H_3O^{\oplus}} Y \xrightarrow{NH_3} Z \xrightarrow{Br_2} CH_3NH_2$$

X, Y, and Z are?

Q.18 An acid X react with PCI_5 to form a compound (Y). X also react with NaOH to form a compound (Z). Both Y and Z react together and from (E), E react with a reagent (F) to give back compound (Y) what are X, F, Z,E and F?

Q.19 How will you synthesise?

- (i) Acetyl chloride from methyl chloride
- (ii) Acetamide from ethyl alcohol
- (iii) Ethyl acetate from acetic acid

Q.20 Complete the following reaction?

(ii)
$$O = C + E \xrightarrow{PCl_3} F + C_2H_5OH$$

(iii)
$$X + O = C$$

$$NH_2 \xrightarrow{HCI} Y \xrightarrow{CH_2 = O} Z \xrightarrow{Urea} Resin$$

Q.21 Complete the following equations:

(i)
$$CH_3CH_2CH_2Br \xrightarrow{CN-} ? \xrightarrow{H_2O/H^+} ?$$

(ii)
$$H_3C - C - Br + CN - \longrightarrow ? \xrightarrow{Cold \ conc.} ?$$

 CH_3 $+ CH_3$ $+ CH_3$

Q.22 Identify the compounds:

1, 4-Cyclohexadiene
$$\xrightarrow{\text{t-BuOK}}$$
 (D)
+ CHBr₃ (C₇H₈Br₂)
 \downarrow KMnO₄
(E)
(F) $\xrightarrow{\text{H}_2}$ (C₇H₈Br₂O₄)
(C₇H₁₀O₄)

Q.23 Compound (A) $C_5H_8O_2$ liberated carbon dioxide on reaction with sodium bicarbonate. It exists in two forms neither of which is optically active. It yields compound (B) $C_5H_{10}O_2$ on hydrogenation. Compound (B) can be separated into two enantiomorphs. Write the structural formulae of (A) and (B) giving reason.

Q.24 An acidic compound (A), $C_4H_8O_3$ loses its optical activity on strong heating yielding (B), C_4H_6O which reacts readily with $KMnO_4$. (B) forms a derivative (C) with $SOCl_2$, which on reaction with $(CH_3)_2NH$ gives (D). The compound (A) on oxidation with dilute chromic acid gives an unstable compound (E) which decarboxylates readily to give (F), C_3H_6O . The compound (F) gives a hydrocarbon (G) on treatment with amalgamated Zn and HCl. Give structures of (A) to (G) with proper reasoning.

Q.25 A pleasant smelling optically active ester (F) has M.W = 186. It does not react with Br_2 in CCl_4 Hydrolysis of (F) gives two optically active compounds, (G) soluble in NaOH and (H). (H) gives a positive iodoform test and on warming with cone. H_2SO_4 gives (I) (Saytzeff-product) with no geometrical isomers. (H) on treatment with benzene sulfonyl chloride gives (J), which on treatment with NaBr gives optically active (K). When the Ag^+ salt of (G) is treated with Br_2 racemic (K) is formed. Give structures of (F) to (K) and explain your choices.

Q.26 Compound (A), M.F $C_6H_{12}O_2$ reduces ammoniacal silver nitrate to metallic silver and loses its optical activity on strong heating yielding (B), $C_6H_{10}O$ which readily reacts with dilute KMnO₄. (A) on oxidation with KMnO₄ gives (C) having M.F $C_6H_{10}O_3$ which decarboxylates readily on heating to 3–pentanone. The compound (A) can be synthesized from a carbonyl compound having M.F. C_3H_6O on treatment with dilute NaOH. Oxidation of (B) with ammonical silver nitrate followed by acidification gives (D). (D) forms a derivative (E) with SOCI, which on reaction with $H_3CNHCH_2CH_3$ yields (F). Identify (A) to (F) giving proper reaction sequences. What is the name of the reaction involved in the conversion of C_3H_6O to (A)? Give the IUPAC nomenclature of compounds (A) to (F).

Q.27 A solid organic compound (A), $C_0H_6O_3$ is insoluble in dilute NaHCO3. It produces a dibromoderivative (B), C₉H₆O₂Br₂ on treatment with Br₂/CS₂. Prolonged boiling of (A) with concentrated KOH solution followed by acidification gives a compound (C), C_QH₂O₃. The compound (C) gives effervescence with aqueous NaHCO₃ Treatment of (C) with equimolar amount of Me₂SO₄/NaOH gives (D), C₁₀H₁₀O₃. The compound (D) is identical with the compound prepared from o-methoxy benzaldehyde by condensation with acetic anhydride in the presence of sodium acetate. Treatment of(C) with alkaline C_sH_sSO₃Cl produces (E) which on vigorous oxidation with KMnO₄ gives (F). Hydrolysis of(F) gives a steam volatile compound (G) having M.F. $C_7H_6O_3$. Give the structures of(A) to (G) giving the proper reaction sequences.

Q.28 A neutral compound (A) $C_9H_{16}O_2$ on refluxing with dilute alkali followed by acidification yields (B) $C_5H_8O_2$ and (C) $C_4H_{10}O$. (B) liberates CO_2 from bicarbonate solution. (C) on dehydration yields 2–butene as the major product. B on treatment with OsO_4 followed by reactive hydrolysis gives (D) $C_5H_{10}O_4$ (D) when treated with lead tetraacetate furrnishes acetone and (E) $C_2H_2O_3$. (E) is acidic and reduces Tollen's reagent. Identify (A), (B), (C), (D) and (E) and write the reactions involved.

Q.29 An organic compound A on treatment with ethyl alcohol gives a carboxylic acid B and compound C. Hydrolysis of C under acidic conditions gives B and D. Oxidation of D with $KMnO_4$ also gives B. The compound B on heating with $Ca(OH)_2$ gives E (molecular formula C_3H_6O). E does not give Tollen's test and does not reduce Fehling's solution but forms a 2,4–dinitrophenyihydrazone. Identify A, B, C, D and E.

Q.30 An aqueous alcoholic solution of acetoacetic ester imparts a blue colour with a solution of FeCl₃. To this solution if bromine solution is added carefully, the initial colour disappears and the brown colour of bromine appears, which fades soon and the solution after remaining colourless for some time regains the blue violet colour. Explain.

Exercise 2

Single Correct Choice Type

Q.1 Find the reagent used to bring about following conversions.

- (A) CICOCH₂-CH₂ COCI
- (B) CH₃COOCOCH₃
- (C) CH_3 COCI
- (D) CICOCOCI

Q.2
$$(i) CH_2N_2 (4 \text{ mole})$$

$$(i) CH_2N_2 (4 \text{ mole})$$

$$(ii) Ag_2O; \Delta/MeOH$$

$$(A)$$

Product (A) of reaction is?

(A)
$$CO_2Me$$
 CO_2Me CH_2-CO_2Me CH_2-CO_2Me

(D)
$$CH_2-CO_2Me$$

Q.3 4-Pentenoic acid
$$\xrightarrow{SOCl_2}$$
 (X) $\xrightarrow{N_H}$ (Y)

(i) LAH

(ii) H₃O

(Z) $\xrightarrow{\text{(iii) Hil OH}}$

Identify final (major) product:

(A)
$$CH_2=CH-CH_2-CH_2-C-N$$

(C)
$$CH_2=CH-CH_2-CH_2-CH-N$$

Q.5
$$(P)$$
 $\xrightarrow{NaN_3}$ (P) $\xrightarrow{Ag_2O}$ (Q) \downarrow H_2O (S) $\xrightarrow{NaNO_2}$ (R)

Identify (S) major product:

Multiple Correct Choice Type

Q.6 Which will elimination CO₂ only on heating

- (D) CH₂=CH-CH₂-COOH
- **Q.7** Methanoic acid and Ethanoic acid can be differentiated by :
- (A) Fehling test
- (B) lodoform test
- (C) Schiff's test
- (D) NaHCO₃ test

Assertion Reasoning Type

Q.8 Statement-I: COOH is optically inactive, it is taken in a glass container and plane polarized light (PPL) is passed through it after heating it for several minutes. The PPL shows significant optical rotation.

Statement-II: Like β -keto acid, gem dicarboxylic acid eliminates CO_2 on heating.

(A) Statement-I is true, Statement-II is true and Statement-II is correct explanation for Statement-I.

- (B) Statement-I is true, Statement-II is true and Statement-II is NOT the correct explanation for Statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.

Comprehension Type

Paragraph 1: Ozonolysis of a compound Agathene dicarboxylic acid gives following compounds:

On complete reaction by Na-EtOH Agathene dicarboxylic acid give hydrocarbon $C_{20}H_{38}$ which have 5 chiral carbon in it.

Q.9 The structure of Agathene dicarboxylic acid is:

Q.10 How many chiral carbon are present in Agathene dicarboxylic acid:

- (A) 2
- (B) 3
- (C) 4
- (D) 5

Q.11 Total stereoisomers possible for Agathene dicarboxylic acid are :

- (A) 16
- (B) 18
- (C) 32
- (D) 64

Q.12 Structure of product formed when Agathene dicarboxylic acid is heated with soda lime is :

(A)
$$CH_2$$
 (B) CH_2 (C) CH_2 (C) CH_2 (D) CH_2 (C) CH_2 (D) CH_2 (C) CH_2 (C) CH_2 (D) CH_2

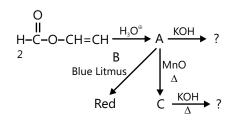
Paragraph 2:

18 OMe
$$(i) O_3 \longrightarrow A + B \longrightarrow OH^-/\Delta$$

$$C + D \longrightarrow H^+/\Delta$$

$$F$$

Q.13 Product C and D are:


Q.14 Mechanism for hydrolysis of A will be:

(A)
$$A_{AC^2}$$
 (B) A_{AL^1} (C) A_{AC^1} (D) A_{AL^2}

Q.15 F is

(A)
$$H - C - CH - C - CH$$
 (B) $H - C - C - OH$ O O O O

Paragraph 3:

Q.16 Mechanism of formation of A and B is

- (A) A_{AC^2}
- (B) $A_{\alpha c^1}$
- (C) A 411
- (D) A_{Δ12}

Q.17 Select true statement:

- (A) Both B and C give same name reaction with KOH
- (B) Both B and C give iodoform test
- (C) Both B and C give chiral product with PhMgCl followed by $\mathrm{NH_{4}Cl}$
- (D) Both B and C are redox reaction

Q.18 Best method out of the given to prepare B is

Match the Columns

Q.22 Match reactions given in column I with Names in column II.

Column I		Column II		
(A)	COOEt EtONa COOEt	(p)	Knoevenagel reaction	
(B)	$CH_{2}(COOEt)_{2} + \underbrace{\frac{(i) EtOK}{(ii) H_{3}O^{\oplus}, \Delta}}$	(q)	Perkin reaction	
(C)	Br (i) Zn (ii) H ₃ O®	(r)	Reformatsky reaction	
(D)	MeO OEt MeOK	(s)	Dieckmann's condensation	

Q.23

Column I		Column II (Product Differentiate By)	
(A)	$CH_3 - CH = CH_2 \xrightarrow{O_3} (U) + (V)$	(p)	By Haloform test
(B)	CH_{3} $CH_{3}-C = CH-CH_{3} \xrightarrow{O_{3}} (W)+(X)$	(q)	By Fehling test
(C)	0	(r)	By aq. NaHCO ₃
	$Ph - C - O - Ph \xrightarrow{H_3O^{\oplus}} (Y) + (Z)$	(s)	By Tollen Test

Q.24

Column I (Reactions)		Column II (Types of Reaction)	
(A)	CH ₃ -CH=CH ₂ + HCl →	(p)	Regioselective
(B)	+ (CN → Δ → CN →	(q)	Stereoselective
(C)	D CH ₂ HCl	(r)	Stereospecific
	CMe ₂ =CH ₂ HCI	(s)	Diastereomers
(D)		(t)	Cyclic addition

Q.25

Co	Column I		Column II	
(A)	$\begin{array}{c c} CH_3-C-H & \xrightarrow{(i) \ Al(OEt)_{3^j}\Delta} & Products \\ II & O & \end{array}$	(p)	One of the organic product formed will decolourise bromine water	
(B)	COOMe $C-H + CH_2 \xrightarrow{\text{(i) MeO} \atop \text{(ii) } H_3O^{\oplus}/\Delta} Product(s)$ $COOMe$	(q)	One of the organic product formed will give brisk effervescence with NaHCO ₃	
(C)	Phiviger (ii) H [®]		One of the organic product formed will give haloform test.	
	(iii) SOCl ₂ (iv) MeMgCl	(s)	One of the organic product formed will give 2, 4 DNP test	

Q.26

Column I (Reaction)		Column II (Product obtained by reaction)	
(A)	R-C-OR' (i) LAH (ii) H₂O →	(p)	R'-CH ₃
(B)	R'-C-OH (i) LAH (ii) H₂O ►	(q)	R'-OH
(C)	$R'-CH_2-Br \xrightarrow{LAH}$	(r)	R'-CH ₂ -OH
(D)	R'-C-H_SBH/EtOH→ II O	(s)	R'-H
(E)	R-C-OR' Red P/HI→ O	(t)	R-CH ₃

Previous Years' Questions

Q.1 When benzene sulphonic acid and p–nitrophenol are treated with NaHCO₃, the gases released respectively, are (2006)

Q.2 Which of the following reactants on reaction with conc. NaOH followed by acidification gives the following lactone as the only product? (2006)

Q.3 In the following reaction sequence, the correct structures of E, F and G are

$$OH \xrightarrow{\bullet} [E] \frac{I_2}{NaOH} [F] + [G]$$

(* implies ¹³C labelled carbon)

(2008)

(A)
$$E = Ph \times CH_3$$
 $F = Ph \times ONa$

G=CHI₃

G=CHI,

(D)
$$E = Ph$$
 CH_3
 $F = Ph$
 CH_3
 $G = CH_3I$

Q.4 Reaction of RCONH₂ with a mixture of Br_2 and KOH gives $R-NH_2$ as the main product. The intermediates involved in this reaction are: (1992)

(A) RCONHBr

(B) RNHBr

(C) R-N=C=O

(D) RCONBr₂

Comprehension: RCONH₂ is converted into RNH₂ by means of Hofmann bromamide degradation.

$$\begin{array}{c|c}
& O \\
& NH_2 \\
& O \\
& NHBr \\
& O \\
& N \\
& O \\
& O$$

In this reaction, RCONHBr is formed from which this reaction has derived its name. Electron donating group at phenyl activates the reaction. Hofmann degradation reaction is an intramolecular reaction. (2006)

Q.5 How can the conversion of (i) to (ii) be brought about?

(A) KBr

(B) KBr + CH₃ONa

(C) KBr + KOH

(D) $Br_2 + KOH$

Q.6 Which is the determining step in Hofmann bromamide degradation?

(A) Formation of (i)

(B) Formation of (ii)

(C) Formation of (iii)

(D) Formation of (iv)

Q.7 What are the constituent amine formed when the mixture of (1) and (2) undergoes Hofmann bromamide degradation?

$$CONH_2$$
 $CONH_2$ $CONH_2$ $CONH_2$

(C)
$$NH_{2r}$$
 NH_{2r}

Q.8 (±) 2-Phenylpropanoic acid on treatement with (+) 2-butanol gives (A) and (B). Deduce their structures and also establish stereochemical relation between them. (2003)

Q.9 Compound A of molecular formula $C_9H_7O_2CI$ exists in keto from and predominantly in enolic form B. On oxidation with $KMnO_4$, A gives m-chlorobenzoic acid. Identify A and B. (2003)

Q.10
$$\frac{KCN}{DMF} (A) \frac{C_2H_3ONa/EtOH}{C_6H_5CHO} (B)$$

$$\frac{H_3O^{\dagger}/\Delta}{heat} (C) \frac{SOCl_2}{CH_3NH_2} (D)$$

Identify A to D.

(2004)

Paragraph 1 (Questions 11 to 12)

In the following sequence, products I, J and L are formed. K represents a reagent.

Hex-3-ynal
$$\frac{1. \text{ NaBH}_4}{2. \text{ PBr}_3}$$
 $I \xrightarrow{2.\text{CO}_2}$ $J \xrightarrow{K}$

Q.11 The structures of compounds J and K respectively are (2008)

(B) Me OH and
$$SOCI_2$$

Q.12 The structure of product L is: (2008)

Q.13 The carboxyl functional group (–COOH) is present in *(2012)*

- (A) Picric acid
- (B) Barbituric acid
- (C) Ascorbic acid
- (D) Aspirin

Q.14 The total number of carboxylic acid groups in the product P is: (2013)

$$\begin{array}{c|c}
O & & \\
\hline
 & 1. H_3 O^+, \Delta \\
\hline
 & 2. O_3 \\
\hline
 & 3. H_2 O_2
\end{array}$$

Paragraph 2 (Questions 15 to 16)

P and Q are isomers of dicarboxylic acid $C_4H_4O_4$. Both decolorize Br_2/H_2O . On heating, P forms the cyclic anhydride.

Upon treatment with dilute alkaline $KMnO_{4'}$ P as well as Q could produce one or more than one from S, T and U.

Q.15 Compounds formed from P and Q are, respectively (2013)

- (A) Optically active S and optically active pair (T, U)
- (B) Optically inactive S and optically inactive pair (T, U)
- (C) Optically active pair (T, U) and optically active S
- (D) Optically inactive pair (T, U) and optically inactive S

Q.16 In the following reaction sequences V and W are, respectively (2013)

$$Q \xrightarrow{\frac{H_2/Ni}{\Delta}} V$$

$$+ V \xrightarrow{\text{AICI}_3 \text{ (anhydrous)}} \xrightarrow{1. \text{Zn-Hg/HCI}} W$$

$$(A) \quad \bigvee_{V} \quad \text{and} \quad \bigvee_{W} \quad \bigcirc$$

(C)
$$\bigvee_{V}$$
 O and \bigvee_{W} HOH₂C \bigvee_{W} and

CH₂OH

CH₂OH

$$\begin{array}{c}
NH_2 \\
\hline
NH_2 \\
\hline
NH_2
\end{array}$$
Acetic anhydride
$$\begin{array}{c}
CH_3NH_2
\end{array}$$

$$\begin{array}{c}
CH_3NH_2
\end{array}$$

$$\begin{array}{c}
CH_3
\end{array}$$

$$\begin{array}{c}
CH_3
\end{array}$$

+ CH₃COOH

$$(B) \qquad \begin{array}{c} \mathsf{NH}_2 \\ \mathsf{H} \\ \mathsf{I} \\ \mathsf{O} \\ \mathsf{O} \end{array} + \mathsf{CH}_3\mathsf{COOH}$$

(D)

Q.18 Different possible thermal decomposition pathways for peroxyesters are shown below. Match each pathway from list I with an appropriate structure from list II and select the correct answer using the code given below the lists. (2014)

$$\begin{array}{c}
P \\
-CO_2 \uparrow \\
R^{\bullet} + R'O^{\bullet} \\
\hline
Q \\
-CO_2 \uparrow \\
R^{\bullet} + R'O^{\bullet} \longrightarrow R^{\bullet} + X^{\bullet} + carbonyl compound \\
\hline
R \\
RCO_2^{\bullet} + R'O^{\bullet} \\
\hline
S \\
RCO_2^{\bullet} + R'O^{\bullet} \\
\hline
-CO_2 \uparrow \\
R^{\bullet} + R' O^{\bullet}
\end{array}$$

$$\begin{array}{c}
R \\
+ R' \cdot O^{\bullet} \\
\hline
-CO_2 \uparrow \\
R^{\bullet} + R' \cdot O^{\bullet}
\end{array}$$

	List I		List II
(i)	Pathway P	(p)	C ₆ H ₅ CH ₂ OCH ₃
(ii)	Pathway Q	(q)	C ₆ H ₅ OOCH ₃
(iii)	Pathway R	(r)	O O CH ₃ CH ₂ C ₆
(iv)	Pathway S	(s)	O O CH ₃ CH ₃

Code:

(A)
$$p r s q$$

$$(C)$$
 s p q r

$$(D)$$
 r q p s

Q.19 The number of hydroxyl group(s) in Q is (2015)

$$H_{H_3C}$$
 H_3C
 H_3

Q.20 Among the following, the number of reaction(s) that produce(s) benzaldehyde is

(B)
$$\begin{array}{c} CHCI_2 \\ \hline 100^{\circ}c \end{array}$$

(C)
$$H_2$$
 $Pd-BaSO_4$

(D)
$$CO_2Me$$

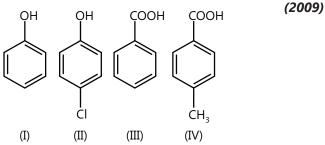
$$\frac{DIBAI-H}{Toluene, -78^{\circ}C}$$

Q.21 The major product U in the following reactions is

(2015)

$$\underbrace{ \frac{\text{CH}_2 = \text{CH-CH}_3, \text{H}^+}{\text{High pressure, heat}}} \text{T} \xrightarrow{\text{Radical initiator, O}_2} \text{U}$$

Q.22 The correct order of acidity for the following compounds is


- (A) | > || > ||| > |V|
- (B) ||| > | > || > |V|
- (C) |I| > |V > |I > |
- (D) I > III > IV > II

Q.23 Reagent(s) which can be used to bring about the following transformation is(are) (2016)

$$O \subset O$$
 $COOH$
 $O \subset O$
 $COOH$
 $O \subset O$
 $COOH$

- (A) LiAlH₄ in $(C_2H_5)_2O$ (B) BH₃ in THF
- (C) NaBH, in C,H,OH (D) Raney Ni/H, in THF

Q.24 The correct acidity order of the following is

- (A) (III) > (IV) > (II) > (I)
- (B) (IV) > (III) > (I) > (II)
- (C) (III) > (II) > (I) > (IV)
- (D) (II) > (III) > (IV) > (I)

Q.25 Amongst the following, the total number of compounds soluble in aqueous NaOH is: (2010)

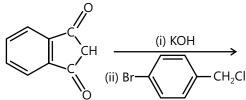
Q.26 The compounds P, Q and S

(2010)

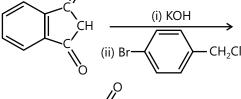
$$H_3C$$
 P
 $COOH$
 COO

were separately subjected to nitration using HNO_3/H_2SO_4 mixture. The major product formed in each case respectively, is

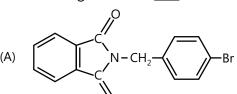
(A)
$$HO$$
 OCH_3
 OCH_3

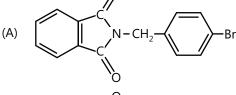

(B)
$$HO$$
 NO_2 H_3 C NO_2 NO_2

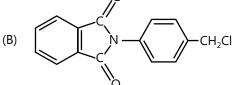
(C)
$$HO \longrightarrow H_3C \longrightarrow H_3C$$


(D)
$$HO$$
 H_3C NO_2 NO_2

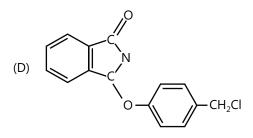
Q.27 (2010)


- Q.28 The major product of the following reaction is (2011)
- **Q.29** Among the following compounds, the most acidic (2011)


(A) p-nitrophenol


(B) p-hydroxybenzoic acid

(C) o-hydroxybenzoic acid


(D) p-toluic acid

Q.30 The compound that undergoes decarboxylation most readily under mild condition is (2011)

- COOH COOH CH₂COOH
- CH₂COOH COOH (D)

- **Q.31** With reference to the scheme given, which of the given statements about T,U,V and W is correct? (2012)

- LiAlH₄ $(CH_3CO)_2O \rightarrow W$
- (A) T is soluble in hot aq. NaOH
- (B) U is optically active
- (C Molecular formula of W is C₁₀H₁₈O₄
- (D) V gives effervescence on treatment with aq. NaHCO₃

PlancEssential Questions

JEE Main/Boards

Exercise 1

Q.2 Q.8 Q.17 Q.21 Q.25 Q.29

Exercise 2

Q.1 Q.4 Q.7 Q.13

Previous Years' Questions

Q.1 Q.10 Q.12 Q.17 Q.21

JEE Advanced/Boards

Exercise 1

Q.2 Q.8 Q.18 Q.22 Q.30 Q.25

Exercise 2

Q.4 Q.6 Q.9 Q.14 Q.18

Previous Years' Questions

Q.2 Q.8 Q.14 Q.21 Q.25 Q.31

Answer Key

JEE Main/Boards

Exercise 2

Q.1 B **Q.2** A **Q.3** D **Q.4** C **Q.5** B **Q.6** A **Q.7** B **Q.8** B **Q.9** D **Q.10** D **Q.11** B **Q.12** A **Q.14** C **Q.16** C **Q.13** B **Q.15** C **Q.17** B **Q.18** B **Q.19** D

Previous Years' Questions

Q.1 D **Q.2** C **Q.3** C **Q.4** A **Q.5** D **Q.6** B **Q.7** C **Q.8** D **Q.9** False **Q.10** False **Q.11** D **Q.12** C **Q.15** C **Q.13** B **Q.14** C **Q.15** C **Q.16** D **Q.17** D **Q.18** A **Q.19** C **Q.20** D **Q.21** C

JEE Advanced/Boards

Exercise 2

Single Correct Choice Type

Q.1 D

Q.2 B

Q.3 B

Q.4 C

Q.5 B

Multiple Correct Choice Type

Q.6 A, C, D

Q.7 A, C

Assertion Reasoning Type

Q.8 D

Comprehension Type

Q.9 A

Q.10 C

Q.11 C

Q.12A

Q.13 C

Q.5 D

Q.14 B

Q.26 C

Q.20 A, B, C, D

Q.14 A

Q.6 D

Q.15 B

Q.21 B

Q.27 C

Q.15 D

Q.16 A

Q.17 D

Q.18 B

Match the Columns

Q.19 A \rightarrow s; B \rightarrow p; C \rightarrow r; D \rightarrow s

Q.20 A \rightarrow p; B \rightarrow q, s; C \rightarrow r

Q.21 A \rightarrow p; B \rightarrow r, t; C \rightarrow p, s; D \rightarrow p, q, s

Q.22 A \rightarrow q, r; B \rightarrow p, q; C \rightarrow r, s

Q.23 A \rightarrow q, ; B \rightarrow r; C \rightarrow p; D \rightarrow r; E \rightarrow s, t

Previous Years' Questions

Q.1 D	Q.2 C	Q.3 C	Q.4 A, C
Q.7 B	Q.11 A	Q.12 C	Q.13 D
Q.16 A	Q.17 A	Q.18 A	Q.19 D
Q.22 A	Q.23 C	Q.24 A	Q.25 5
Q.28 A	Q.29 C	Q.30 B	Q.31 A, C, D

Solutions

JEE Main/Boards

Exercise 1

Sol 1: The uptake of 2H atoms shows the presence of one >C=C< along with C₆H₅- and -COOH, which accounts for the 6° unsaturation. Furthermore H and I are monosubstituted benzene derivatives.

H is
$$C_6H_5$$
– $C(COOH)=CH_2$ giving

H₃CCHC₆H₅COOH with one asymmetric carbon atom.

I is C₆H₅CH=CHCOOH, giving

C₆H₅CH₂COOH with no asymmetric carbon.

$$C = CH_2 \xrightarrow{H_2} Pd$$

$$COOH$$

$$(H)$$

$$C = CH_2 \xrightarrow{H_2} Pd$$

$$C = CH_3$$

$$COOH$$

C=CHCOOH
$$\frac{H_2}{Pd}$$
(I) CH_2CH_2COOH

Sol 2: (A) = $C_{15}H_{31}CH_{2}OH$,

(B) = $C_{15}H_{31}CH_{2}CI$,

 $(C) = C_{15}H_{21}CH_{2}CH_{2}CH_{2}OH_{3}$

(D) = $C_{15}H_{31}CH_{2}CH_{3}COOH$.

Sol 3: (Y) is an ester because it is hydrolysed to acid and alcohol. Since the alcohol is not oxidized by acidified $KMnO_4$ and gives cloudiness at once with Lucas reagent, hence it is a t-alcohol.

Sol 4: This is because C_2H_5OH undergoes dehydration to form C_2H_4 at 170°C in presence of excess of conc. H_3SO_4 .

$$CH_3 - CH_2OH \xrightarrow{H_2SO_4(conc.)} H_2O + CH_2 = CH_2$$

Sol 5: In the presence of strong acids, the H[®] is captured by the carboxylic acid and the following equilibrium is established:

$$R-C \bigvee_{OH}^{O} + H_2SO_4 \Longrightarrow R-C \bigvee_{OH}^{+} + H_2SO_4^{-}$$

Sol 7: It is because the carboxylate group (–COO⁻) of the branched acid is more shielded from the solvent molecules, there, it cannot be stabilized effectively by salvation.

Sol 8: It is because carboxylic group does not have true carbonyl group due to resonance.

$$\begin{array}{ccc}
 & O \\
 & \parallel & + \\
 & R - C - O - H & \longrightarrow R - C = O + \\
\end{array}$$

Due to resonance >C=O bond of -COOH develops partial double bond character and cannot show reactions with hydroxylamine, phenyl hydrazine, etc.

Sol 9: It is because formic acid combines the properties of both an aldehyde an acid.

Hence it has reducing character of aldehydes.

 $HCOOH + 2(Ag(NH_3)_2)^+OH^- \xrightarrow{\Delta}$

 $HCOONH_4 + 3NH_3 + H_2O + 2Ag \downarrow$

or HCOOH + Ag₂O \rightarrow CO₂ +H₂O + 2Ag \downarrow

Sol 10: Both these unsaturated acids have two ionisable hydrogens. After the release of first hydrogen, second hydrogen of maleiate ions is involved in H-bonding, whereas no H-bonding is possible in fumarate ion.

Due to the formation of H-bond in maleiate ion more energy is required to remove H^{\oplus} from it than from fumarate ion, in which H^{\oplus} release is easy comparatively. Thus, K_2 for fumaric acid is more than maleic acid.

Sol 11:

$$CH_3-CH_2-MgBr \xrightarrow{H_3C-CH_2}$$
 $CH_3-CH_2-CH_2CH_2OMgBr \xrightarrow{H_3O^+}$
(X)
 $CH_3-CH_2-CH_2CH_2OH \xrightarrow{KMO_4}$
(Y)
 $CH_3CH_2-CH_2COOH$
(Z) Butanoic acid

Sol 12:

HC=CH
$$\xrightarrow{\text{NaNH}_2}$$
 NaC=CNa $\xrightarrow{\text{2CH}_2\text{I}}$ \Rightarrow CH₃-C=CH-CH₃ $\xrightarrow{\text{HgSO}_4}$ CH₃-C=CH-CH₃ $\xrightarrow{\text{OH}}$ OH $\xrightarrow{\text{Tautomaries}}$ CH₃-C-CH₂-CH₃ $\xrightarrow{\text{NaOH/Br}}$ Na+O-C-CH₂CH₃ $\xrightarrow{\text{Haloform reaction}}$ OH $\xrightarrow{\text{Haloform reaction}}$ $\xrightarrow{\text{HgSO}_4}$ CH₃CH₂COOH

Sol 13:

$$CH_3-C$$
 $C-CH_3 \longrightarrow (Dimmer)$
 $C-CH_3 \longrightarrow (Dimmer)$

Dimerization of acetic acid occur in benzene via intermolecular H-bonding Hydrogen bond is a special type of dipole-attraction.

Sol 14: sp hybridized carbon of -C = C— of acid (I) and sp² hybridized carbon of -C = C— of acid (II) attract the bonded electron more than do the sp³ — hybridized

carbon atoms. Consequently $-C \equiv C-$ and $-C \equiv C-$ are acid strengthening EWG's (Electron withdrawing group, stabilizes anion, thus strengthens acid) This makes CH_3CH_2COOH weaked of all these three acids since $-C \equiv C-$ is more acid strengthens group than $-C \equiv C-$ group. This makes acid (I) stronger than acid (II)

Sol 15:

$$OH \longrightarrow OH \longrightarrow OH \longrightarrow H_3O^+$$

$$R-C-OH \longrightarrow \left(R-C-O \equiv R-C \stackrel{-\delta}{\underset{\delta}{\longleftarrow}} \right) + H_3O^+$$

The electron charge in carboxylate ion is more dispersed in comparison to phenoxide ion, since there are two electro negative oxygen carboxylate ion as compared to oxygen atom in phenoxide ion.

Sol 16: CH₃COCl will after least stearic hindrance hence it hydrolysis will be more vigorous.

Sol 17: Amide = CH₃CONH₂ Therefore acid is CH₃COOH

Sol 18: Acid (Y) obtained after decarboxylation must be mono carboxylic acid thus molecular weight = Equiva lent weight

The acid must Be (COOH \rightarrow 45g/mol) Given mass = 60g; \therefore = 60 - 45 = 15g/mol

Which is definitely due to - CH₃

Hence Y is CH, COOH

Carboxylic acid (X) has second COOH replacing H of CH₃COOH

SO (X) is malonic $CH_2(COOH)_2$ of molecular mass 60 + 44 = 104

Since it has two group so its equivalent mass = 104/2 = 52b/eq.

Sol 19: Dehydration occur with all the three reagent

$$\begin{split} &\mathsf{C_2H_5CH_2CONH_2} \xrightarrow{\quad \mathsf{P_2O_5} \quad} \mathsf{C_6H_5CH_2CN+H_2O} \\ &\mathsf{C_6H_5CH_2CONH_2} \xrightarrow{\quad \mathsf{SOCl_2} \quad} \mathsf{C_6H_5CH_2CN+2HCI+SO_2} \\ &\mathsf{C_6H_5CH_2CONH_2} \xrightarrow{\quad \mathsf{POCl_3Or} \quad} \mathsf{C_6H_5CH_2CN+H_2O} \end{split}$$

Sol 21: (A) (CH₃CO)₂O (Acetic anhydride)

- (B) CH₃COOH (Ethanoic acid)
- (C) CH₃COOC₂H₅ (Ethyl ethanoate)
- (D) C₃H₅OH (Ethanol)
- (E) CH₃COCH₃

Sol 22: (A) CH₃CH₂COOC₂H₅ (Ethyl propionate)

(B)
$$CH_3CH_2CO CHCOOC_2H_5$$

 CH_3

Ethyl-(3-keto 2-methylpentanoic acid)

(C)
$$CH_3 - CH_2 - CO - CH - COOH$$

 CH_3

3-Keto-2-methylpentanoic acid

Sol 23: (A) CH₃CH₂CH₂CH₂COOCH₂CH₃ or CH₃COOCH₂CH₂CH₂CH₃

- (B) C_2H_5OH
- (C) CH₃CH₂CH₂CH₂OH
- (D) CH₃CHO
- (E) CH₂CH = CHCHO
- (F) CH₂COOH

Sol 24: (A)

$$\begin{array}{cccc} \mathsf{CH_3} - \mathsf{C} - \mathsf{COOH} & \mathsf{CH_3} - \mathsf{C} - \mathsf{COOH} \\ \parallel & \parallel \\ \mathsf{CH_3} - \mathsf{C} - \mathsf{H} & \mathsf{H} - \mathsf{C} - \mathsf{CH_3} \\ \end{array}$$

(2-methylbutanoic acid)

Sol 25: (A) HCOOH

(B) CO

 $(C) (COOH)_2$

Sol 26: A = CH₂OH (Methanol)

 $B = CH_3COCH_3$ (Methyl ethanoate)

C = HCHO (Methanal)

D = HCOOH (Methanoic acid)

E = HCONH₂ (Formamide or methanamide)

Sol 27:

$$H_5C_6$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_4
 H_5C_6
 H_5C_6
 H_5C_6
 H_5C_6
 H_7
 H_8
 H_9C_8
 H_9C_8

Sol 28:

A=HO OH
$$B=H_2C$$
 OH CH_3 OH CH_3 OH CH_3 OH CH_3 OH CH_4 OH CH_5 OH CH_5

Sol 29:

 $G=H_3C \setminus CH_3$

$$A = H_3C$$

$$H_3C$$

Sol 30:

$$X = H_3C \bigcirc O \bigcirc CH_3$$

Propyl propionate

$$Y = \begin{array}{c} H_3C \\ HO \\ \end{array}$$
Propionic acid

$$Z = \begin{array}{c} H_3C \longrightarrow H_3C \\ \hline OH & D = \\ \hline Propan-1-ol & H_3C \\ \hline \end{array}$$

Exercise 2

Single Correct Choice Type

Sol 1: (B)

$$\begin{array}{c|c}
& \xrightarrow{O} & \xrightarrow{O} & \xrightarrow{O} & \xrightarrow{ZnHg} \\
& \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & \downarrow & \downarrow & & \downarrow & & \downarrow & \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
& \downarrow & \\
& \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow$$

Sol 2: **(A)** MeCOCl > MeCON $_3$ > MeCOOCOMe. Consider electronegativity of halogen, azide & ester.

Halogen is on top, since it has the highest electronegativity.

Sol 3: (D)

$$\begin{array}{c} \text{COOC}_2\text{H}_5 \\ \text{COOC}_2\text{H}_5 \end{array} + \begin{array}{c} \begin{array}{c} C_2\text{H}_5\text{ONa} \\ \hline C_2\text{H}_5\text{OH} \end{array} \end{array} \\ \begin{array}{c} \text{COOC}_2\text{H}_5 \\ \hline \end{array} \begin{array}{c} \text{COOC}_2\text{H}_5 \end{array} \begin{array}{c} \begin{array}{c} \text{COOH} \\ \hline \end{array} \end{array} \end{array}$$

Sol 4: (C)

$$H_3C$$
OH
$$\frac{\Delta}{-2H_2O}$$
O
$$CH_3$$
O
$$CH_3$$
O
$$CH_3$$

Sol 5: (B) Acid catalyzed alkyl cleavage

$$Me_3 C \longrightarrow C \longrightarrow O^{18} \longrightarrow CMe_3$$

Sol 6: (A)

$$CH_3CH_2CONH_2 \xrightarrow{PCI_5} CH_3CH_2CN$$
 -Reduction

Sol 7: (B)

$$\begin{array}{c} O \\ H_3CO \\ H_3CO \\ \end{array} \begin{array}{c} O \\ C-O-Et \\ \\ \\ \\ \\ \end{array} \begin{array}{c} O \\ \\ \\ \\ \\ \end{array} \begin{array}{c} O \\ \\ \\ \\ \\ \end{array} \begin{array}{c} O \\ \\ \\ \\ \\ \end{array} \\ O = \begin{array}{c} O \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} O \\ \\ \\ \\ \\ \\ \end{array}$$

Sol 8: (B)

$$CH_3 - C - OCH_2 + CH_2 - NH_3 \xrightarrow{NaOH} CH_3 - C - O - CH_2 - CH_2 - OH$$

Sol 9: (D) Reduction reactions.

Sol 10: (D)

$$\begin{array}{c|c}
COOH \\
\hline
CO_2 \\
A
\end{array}
+ Na_2CO_3$$

Sol 11: (B)

D-(+)-glucose common D-osazone

common D-osazone

D-(+)-mannose

Sol 12: (A) Esterification.

O
Ph - C - O - H + HO¹⁸CH(CH₃)₂
$$\xrightarrow{\text{HCI}}$$
 O
Ph - C - O¹⁸ - CH(CH₃)

Sol 13: (B) Dieckmann condensation product.

Sol 14: (C)

Sol 15: (C)

$$C = N \xrightarrow{P_2O_5} C = N \xrightarrow{CH_3MgBr} C = N \xrightarrow{CH_3MgBr} C = N \xrightarrow{CH_3MgBr} C = O \xrightarrow{CH_3} CH_3$$

$$C = N \xrightarrow{CH_3MgBr} C = O \xrightarrow{C$$

Sol 16: (C)

$$O = C - CH_3$$

$$O = AICI_3$$

$$O = C - CH_3$$

$$\begin{array}{c|c}
OH & OH \\
Br_2 + H_2O & Br
\end{array}$$

$$\begin{array}{c|c}
Br & Br
\end{array}$$

Sol 17: (B) Since it lacks active methylene componenet stable anion formation does not take place and thus it can not undergo self condensation reaction.

Sol 18: (B) Esterification.

Sol 19: (D) Self-explanatory reactions

Previous Years' Questions

Sol 1: (D)
$$CH_3-CH_2-COOH + NaHCO_3 \rightarrow CH_3CH_2COONa + H_2O + CO_2$$

Sol 2: (C)
$$C_6H_5COOH + SOCl_2 \rightarrow C_6H_5-COCI$$

Sol 3: (C)

$$P \xrightarrow{H^{+}} CH_{3} - C = CH_{2} \xrightarrow{NaOH} CHI_{3} \downarrow$$

$$Yellow$$

$$Q \xrightarrow{H^{+}} CH_{3} - CH = CH - OH \longrightarrow CH_{3}CH_{2}OH$$

$$\xrightarrow{\text{Fehling}} Cu_{2}O \downarrow$$
red

Sol 4: (A)

$$\begin{array}{cccc}
O & OMgBr \\
CH_3 - C - OC_2H_5 & \xrightarrow{CH_3MgBr} & CH_3 - & C & -CH_3 \\
& & CH_3 & & CH_3
\end{array}$$

$$\xrightarrow{H_2O} CH_3 - & CH_3 & C$$

Reaction occur at planar sp² carbon giving racemic mixture of product.

Sol 6: (B)
$$C_6H_5 - C - NH_2 \xrightarrow{POCl_3} C_6H_5 - CN$$

Sol 7: (C) Compound with $CH_3 - C-$ or $CH_3-CH(OH)-$ group gives haloform reaction but this reaction is given only by aldehydes, ketones and alcohols, so acetic acid does not give haloform reaction. However acetic acid has three α -H, therefore, statement-I is true but statement-II is false.

Sol 8: (D) p-hydroxy benzoic acid has higher boiling point than o-hydroxy benzoic acid because former prefers intermolecular H-bonding while the later prefer intramolecular H-bonding.

Intermolecular H-bonding OH

Intermolecular H-bonding

Sol 9: Saponification is hydrolysis of ester in presence of dilute base rather in presence of dilute acid.

Sol 10: Propanoic acid has higher boiling point than n-butanol because of more exhaustive H-bonding in former case.

Sol 11: (D) Esterification reaction is involved

$$CH_{3}COOH(\ell) + C_{2}H_{5}OH(\ell) \xrightarrow{H^{+}}$$

$$CH_{3}COOC_{2}H_{5}(\ell) + H_{2}O(\ell)$$

Sol 12: (C)

$$C_2H_5\overline{O}$$
 Na+ CH_3 - C - CI \rightarrow CH_3 - C - O - C_2H_5 Ethyl ethanoate O

Sol 13: (B) Electron releasing groups (Alkyl groups) de stabilizes conjugate base.

The +I effect of C₃H₇ is less than - I effect of CI

$$\rm K_a$$
 of $\rm HC_3CH_2CH_2$ $\rm CH-COOH$ is 139×10^{-5} $\rm CI$

Sol 14: (C) Phenol gives violet colored complex compound with neutral FeCl₃, benzoic acid gives pale dull yellow ppt. with neutral FeCl₃

Sol 15: (C) By reaction with one mole of $CH_3 - C - CI$ with one -NH₂ group the molecular mass increases with 42 unit. Since the mass increases by (390-180) = 210 hence the number of -NH₂ groups is 5.

$$R - NH_2 + CH_3 - \overset{\circ}{C} - CI \xrightarrow{(-HCI)} R - NH - \overset{\circ}{C} - CH_3$$

Sol 16: (D)

$$CH_{2}-Br \xrightarrow{alcoholic} CH_{2}-OR + AgBr$$

$$CH_{3} \xrightarrow{Oxidation} COOH \xrightarrow{\Delta} COOH$$

(Phthalic anhydride)

Sol 17: (D)

$$CH_{3}CH_{2} - C - OH \xrightarrow{NH_{3}} CH_{3}CH_{2}COONH_{4}$$

$$(A) \qquad (B)$$

$$O \\ \downarrow \\ CH_{3} - CH_{2} - C - NH_{2} \xrightarrow{Br_{2}, KOH} CH_{3} - CH_{2} - NH_{2}$$

$$(C) \qquad reaction$$

Sol 18: (A)

$$(CH_3CO)_2O \longrightarrow (COOH_3)$$

$$(CH_3COOH_3)$$

$$(COOH_3)$$

$$(COOH_3)$$

$$(COOOH_3)$$

$$(COOOH_3)$$

$$(COOOH_3)$$

$$(COOOH_3)$$

$$(COOOH_3)$$

$$(COOOH_3)$$

$$(COOOH_3)$$

Sol 19: (C)

$$\begin{array}{c} \text{CH}_3\text{COOH} \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{CH}_2\text{OH} \quad \text{'A'} \\ & & \downarrow \text{PCI}_5 \\ & & \downarrow \text{CH}_3\text{CH}_2\text{CI} \quad \text{'B'} \\ & & \downarrow \text{Alc.KOH} \\ & & \downarrow \text{CH}_2 = \text{CH}_2 \quad \text{'C'} \end{array}$$

Sol 20: (D)

Sol 21: (C) Hofmann bromamide degradation reaction

O
$$\parallel$$
 $R - C - NH_2 + Br_2 + 4NaOH \longrightarrow$
 $R - NH_2 + Na_2CO_3 + 2NaBr + 2H_2O$

1 mole bromine and 4 moles of NaOH are used for per mole of amine produced.

JEE Advanced/Boards

Exercise 1

Sol 1: (i) The isomers have 1° of unsaturation that must be due to -COOH, since CO_2 is evolved on adding NaHCO₃. The remaining oxygen may be present as -OH or -OR.

$$H_3C-\overset{\overset{\star}{C}H}{\overset{\star}{\overset{\star}{C}H_2OH}}$$
 $H_3C-\overset{\overset{\star}{C}H}{\overset{\star}{\overset{\star}{C}H_2COOH}}$ $H_3C-\overset{\star}{\overset{\star}{C}H_2OH}$ $H_3C-\overset{\star}{\overset{\star}{C}H_2OH}$

(ii) LiAlH₄ converts–COOH to –CH₂OH. Only (D) is reduced to an a chiral product.

Not chiral
$$COOH$$
 CH_2OH H_3C-CH HO (E)

(iii) The ether (G) differs from (E) and (F) in that it is inert to oxidation by $KMnO_4$ or CrO_3 . (E) gives a positive iodoform test.

Sol 2:

$$\begin{array}{c|cccc} CH_3 & CH_3 & CH_3 \\ I & HCI \\ Peroxide & H_3C-C-CI & Mg \\ CH_2 & CH_3 & CH_3 \end{array}$$

Sol 3:

H-C=C-H+CH MgBr
$$\xrightarrow{-CH_4}$$
 H-C=CMgBr (G)

$$CO_2 \longrightarrow H-C=C.COOMgBr \xrightarrow{H^+} H-C=C-COOH$$
(H) (I)
$$\frac{HgSO_4/H_2SO_4}{H_2O} \longrightarrow H-C=C-COOH \xrightarrow{COOH}$$

$$OHH$$

$$H-C-CH_2-COOH \xrightarrow{KMnO_4} H_2C$$

$$O (J) COOH$$

Sol 4:

$$CH_{3}CH_{2}-C-OCH_{2}CH_{2}CH_{3} \xrightarrow{H_{2}O}$$

$$CH_{3}CH_{2}COOH + CH_{3}CH_{2}CH_{2}OH$$

$$(A) \qquad (B)$$

$$CH_{3}CH_{2}CH_{2}OHCH_{3} \xrightarrow{Chromic\ acid}$$

$$CH_{2}CHO \xrightarrow{(O)} CH_{3}CH_{2}COOH$$

$$(A)$$

Sol 5:
$$RCO_2H \xrightarrow{SOCl_2} RCOCI \xrightarrow{NaN_3} RCON_3 \xrightarrow{D} RNCO \xrightarrow{Hydrolysis} RNH_2$$

Sol 6: C=O bond is very stable due to large ΔH_f of CO;

so the decomposition reaction $H-\ddot{C}-C \longrightarrow C \equiv O+HCI$ is favoured. Formyl chloride is not stable above -60°C.

Sol 7: An extremely mild but selective oxidizing agent for aldhydes is silver oxide suspended in aqueous base. An unsaturated acid is obtained with this reagent because the >C=C<remains untouched by this reagent.

H CHO H COOH
$$C = C \longrightarrow C = C$$

$$H_2CH_3C \quad CH_3 \quad H_2CH_3C \quad CH_3$$

Sol 8:

$$C_{5}H_{6}O_{4} \xrightarrow{\Delta} C_{4}H_{6}O_{2} \xrightarrow{H_{2}O}$$

$$CH_{3}CH_{2}CH_{2}COOH$$

$$H_{2}C=CHHC \xrightarrow{\Delta} COOH$$

$$COOH$$

$$CH_{2}=CH-HC_{2}COOH \xrightarrow{H_{2}/Ni} CH_{3}CH_{2}CH_{2}COOH$$

Sol 9:

- (A) (CH₃CO)₂O
- (B) CH₃COOH
- (C) $CH_3COOC_2H_5$ (D) C_2H_5OH
- (E) CH₂COCH₃

Sol 10: (A) (C₂H₅COOC₂H5)

- (B) C₂H₅CO-CH(CH₃)COOC₂H₅
- (C) C₂H₅COCH(CH₃)COOH

Sol 11: An alkali salt of palmitic acid is known as soap. The general formula of palmitic acid $C_{15}H_{31}COOH$. Which on hydrolysis in presence of alkali give soap(C₁₅H₃₁COONa) and glycerol as by product.

Sol 12: Acid do not reacts with NaHSO₃though they have >C=O group because of resonance stabilization. The resonance take place as follows.

$$-C \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - C \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - C \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \right]$$

Sol 13:
$$CH_3COOH \xrightarrow{Ca(OH)_2} (CH_3COO)_2Ca$$
(X)
(Y)
Acetic acid
Cal. acetate

Sol 14:
$$CH_3CH_2COOH \xrightarrow{[O]} CH_3CO COOH + H_2O$$

Propionic acid Pyruvic acid

Sol 15: Acid are directly reduced to the corresponding primary alcohol with powerful reactant like LiAlH₄. It attack only on the carbonyl group of a fatty acid.

O
$$R - C - OH + 4H \xrightarrow{\text{LiAlH}_4} RCH_2OH + H_2O$$
Alkanol

Sol 16:

$$\begin{array}{c} \mathsf{CH} & \xrightarrow[]{Hg^{2+}, H_2 \mathsf{SO}_4} & \mathsf{CH}_3 & \xrightarrow[]{H^+/\mathsf{Cr}_2^{2-}\mathsf{O}_7} \\ \mathsf{CH} & \mathsf{CHO} & \mathsf{CHO} \\ \end{array}$$

$$\mathsf{CH}_3 \mathsf{COOH} \xrightarrow[]{NaOH} \mathsf{CAO} \mathsf{CH}_4$$

Sol 17:
$$CH_3CN \xrightarrow{H_3O^+} CH_3COOH \xrightarrow{NH_3}$$
Ethane nitrile Ethanoic acid

(X) (Y)

 $CH_3COONH_4 \xrightarrow{\Delta} CH_3CONH_2$

Ammonium ethanoate Ethanamide

 $\xrightarrow{Br_2/KOH} CH_3NH_2$

Amino methane

Sol 18:
$$CH_3COONa \leftarrow NaOH \longrightarrow CH_3COOH$$

(Z) (X)

$$\xrightarrow{PCl_3} CH_3COCI$$
(Y)

$$CH_3COCI + CH_3COONa \longrightarrow (Y)$$
(Z)

$$O \quad O \quad O$$

$$\parallel \quad \parallel \quad \parallel$$

$$CH_3 - C - O - C - CH_32CH_3 - C - CI$$
(E) (Y)

Sol 19: (i)
$$CH_3CI \rightarrow CH_3COCI$$

Methyl chloride Acetyl chloride
$$CH_3CI \xrightarrow{Mg} CH_3MgCI \xrightarrow{CO_2} H_2O/H^+$$
Methyl chloride
$$CH_3COOH \xrightarrow{SOCI_2} CH_3COCI$$
Acetyl chloride

(iii)
$$C_2H_5OH \longrightarrow CH_3CONH_2$$

Ethyl alcohol Acetamide

 $CH_3OH \xrightarrow{[O]} CH_3CHO \xrightarrow{[O]} CH_3CHO \xrightarrow{[O]} CH_3COCI$

Methyl alcohol

 $CH_3COOH \xrightarrow{SOCl_2} CH_3COCI$
 $\xrightarrow{NH_2} CH_3CONH_2$ Acetamide

(iii) $CH_3COOH \longrightarrow CH_3COOC_2H_5$

Acetic acid Ethyl acetate

 $CH_3COOH \xrightarrow{LiAIH} CH_3CH_2OH$

Acetic acid

 $CH_3COOH/H^+ \longrightarrow CH_3COOC_2H_5$

Ethyl acetate

(ii)
$$O=C$$

$$\begin{array}{c}
NH + H + C_2H_5 - O + C = O \\
NH + H + C_2H_5 = O + C = O
\end{array}$$
Urea (E) Diethyl oxalate

$$C \xrightarrow{PCl_3} O = \langle \begin{array}{c} NH-C=O \\ | \\ NH-C=O \\ \end{array} + 2C_2H_5OH$$
(F) Parabanic acid (Oxalyl urea)

Sol 21: (i)

$$\begin{aligned} \mathsf{CH_3CH_2CH_2CH_2Br} &\stackrel{\mathsf{CN}^-}{\longrightarrow} \\ \mathsf{CH_3CH_2CH_2CN} &\stackrel{\mathsf{-Br}^-/2\mathsf{HOH/H}^+}{\longrightarrow} \\ \mathsf{CH_3CH_2CH_2CH_2COOH} \\ \mathsf{n-Pentanoic\ acid} \end{aligned}$$

Sol 22:

Sol 23:

Sol 24: (A) CH₃CHOHCH₂COOH

- (B) CH₃CH=CHCOOH
- (C) CH₃CH=CHCOCI
- (D) CH₃-CH=HCON(CH₃)₂
- (E) CH₃COCH₂COOH
- (F) CH₃COCH₃
- (G) CH₃CH₂CH₃

Sol 25: Is a saturated monoester with

$$M.W = 186$$

$$F = H_3C \xrightarrow{CH_3O} CH_3 CH_5$$

$$G = H_3C \xrightarrow{CH_3O} H$$

$$H = H_3C + CH_3$$

$$CH_3$$

$$J = H_3C \xrightarrow{OSO_2C_6H_5} CH_3$$

$$K = H_3C \xrightarrow{Br} CH_3$$

Sol 26:

$$A = H_3C \xrightarrow{CH_3} O$$

$$C = H_3C$$

$$D = H_3C$$

$$CH_3$$

$$O$$

$$O$$

$$E = H_3C$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

Sol 28:

(A)
$$CH_3$$
 $C=CH-C-OCH_2CH_2CH_2CH_3$ II O

(B)
$$CH_3$$
 $C=CHCO_2H$

(E)
$$O=CH-CO_2H$$

 $M.F C_2H_2O_3$

Sol 29: The given reaction are as follows.

$$A \xrightarrow{C_2H_5OH} B + C \xrightarrow{H^+} B + D$$
(Carboxylic Acid)
$$(Carboxylic KMnO_4)$$

$$(Carboxylic KMnO_4)$$

The compound E must be ketonic compound as it does not give Tollens test and does not reduce Fehling's solution but forms a 2, 4-dinitrophenyl-hydrazone. Therefore, its structure would be CH₃COCH₃(acetone).

Since E is obtained by heating B with Ca(OH)₂, the compound B must be CH₃COOH (acetic acid).

Since B is obtained by oxidation of D with KMnO₄, the compound D must an alcohol with molecular formula CH₃CH₂OH(ethanol).

Since B and D are obtained by acid hydrolysis of C, the compound C must be an ester CH₃COOC₂H₅(ethyl acetate).

Since the compounds B (acetic acid) and C (ethyl acetate) are obtained by treating A with ethanol, the compound A must be an anhydride (CH₃CO)₂O (acetic anhydride).

The given reaction are

Sol 30: Acetoacetic ester shows tautomerism and the two forms are called as keto and enol forms.

$$H_3C$$
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
Enol form

The enol
$$\begin{pmatrix} OH \\ H_3C-C = CH = \end{pmatrix}$$
 gives blue-violet colour

with FeCl₃solution. When Br₂ is added, it reacts at once with = of the enol form.

$$H_3C$$
 $OH O$
 $C_2H_5 + Br_2$
 $OH O$
 $OH O$

As soon as enol form is consumed, its colouration with FeCl₃ disappears and excess of bromine gives brown colour. As keto and enol forms are in equilibrium, when enol form is used, the equilibrium shifts to right hand side to give more enol form which discharges the colour of excess of Br, and gives blue violet colour with excess of FeCl, present in the reaction mixture.

Exercise 2

Single Correct Choice Type

Sol 1: (D)

Sol 2: (b)

$$C - CI$$

$$i) CH_3N_2 (4 \text{ mole})$$

$$ii) Ag_2O; \Delta MeoH$$

$$CH_2COOMe$$

Sol 3: (B)

$$\begin{aligned} &\mathsf{HOOC} - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH} = \mathsf{CH}_2 \xrightarrow{\mathsf{SOCI}_2} \\ &\mathsf{CIOC} - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH} = \mathsf{CH}_2 \end{aligned}$$

Sol 4: (C)

$$\begin{array}{c} O \\ \parallel \\ H_2N - C - CH_2 - CH_2 - C - N_3 \end{array} \xrightarrow{A} \begin{array}{c} O \\ \parallel \\ -N_2 \end{array}$$

Sol 5: (B)

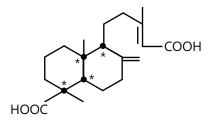
$$\begin{array}{c|c}
O & O \\
\hline
O & O$$

Multiple Correct Choice Type

Sol 6: (A, C, D) Self-explanatory, Rearrangement reactions

Sol 7: (A, C) Self-explanatory

Assertion Reasoning Type


Sol 8: (D) The given compound is optically active.

Comprehension Type

Paragraph 1 (Questions 9 to 12)

Sol 9: (A) Abstraction of α -H takes place to given a carbanion, from the lower side to give C₂OH₃₈

Sol 10: (C) Agathene Dicarboxylic Acid:

∴ 4 Chiral Carbons (shown by *)

Sol 11: (C) No. of Chiral carbons = 4.

 \therefore No. of Optical isomers = $2^4 = 16$

 \therefore Stereoisomers = No. of optical isomers + No. of geometrical isomers = 32.

Sol 12: (A)

$$\begin{array}{c|c} \text{COOH} & & & \\ \hline \\ \text{CH}_2 & & \text{NaOH+} \\ \hline \\ \text{COOH} & & \text{Soda} \\ \\ \text{lime} & & \Delta \\ \end{array}$$

Paragraph 2 (Questions 13 to 15)

Sol 13: (C); Sol 14: (A); Sol 15: (D)

Comprehension 2

18

OMe

OMe

OMe

$$C = 0$$
 $C = 0$
 C

Paragraph 3 (Qeustions 16 to 18)

Sol 16: (A) Mechanism of formation of A and B is A_{AC}^{2}

Sol 17: (D) Both B and C are redox reaction as B involves reduction and C reaction involves oxidation step.

O O
$$\parallel$$
 Sol 18: (B) H-C-CI $\xrightarrow{Me_2Cd}$ H-C-H

Match the Columns

Sol 19:
$$A \rightarrow s$$
; $B \rightarrow p$; $C \rightarrow r$; $D \rightarrow s$

(A) It is an example of Dieckmann reaction which involves condensation of two ester.

- (B) Condensation between an active methylene compound and an keto compound is known as Knoevenagel reaction.
- (C) It is an example of reformatsky reaction
- (D) It is also an example of Dieckmann reaction which involves condensation of two ester to form a ring structure.

Q.20 A
$$\rightarrow$$
 p; B \rightarrow q, s; C \rightarrow r.

- (A) $CH_3 CH = CH_2 \xrightarrow{Q_3 \longrightarrow (U) + (V)} Haloform rection$
- (B) Product are ketone and aldehyde which can be differentiated by Fehling's and Tollens reagent.
- (C) Product are acid and alcohol. Acid gives effervescence with aq. $NaHCO_3$

Q.21 A
$$\rightarrow$$
 p; B \rightarrow r, t; C \rightarrow p, s; D \rightarrow p, q, s

- (A) Markonikov's rule-Regioselective
- (B) Example of Diels Alder reaction-Cyclic addition, stereospecific
- (C)Addition reaction- Regioselective

And will form diastereomers.

(D) Regio as well as stereoselective addition and will form diastereomers.

Q.22 A
$$\rightarrow$$
 q, r; B \rightarrow p, q; C \rightarrow r, s

- (A) Acid will give brisk effervescence with NaHCO₃. Other organic product formed will give haloform test
- (B) Presence of unsaturation will cause decolourisation of Br_2 water. And Acid functional group will give effervescence with NaHCO3.
- (C) One of the organic product formed will give haloform test. One of the organic product formed will give 2, 4 DNP

Q.23 A
$$\rightarrow$$
 q; B \rightarrow r; C \rightarrow p; D \rightarrow r; E \rightarrow s, t

(A)
$$R - C - OR' \xrightarrow{(i) LAH} R - CH_2OH + R'OHOO$$

(B)
$$R'-C-OH \xrightarrow{(i) LAH} R'CH_2OH$$

(C)
$$R'-CH_2-Br \xrightarrow{LAH} R'CH_3$$

(D)
$$R'-C-H \xrightarrow{SBH/EtOH} R'CH_2OH$$

(E)
$$R - C - OR' \xrightarrow{Red P/HI} RCH_3 + R'H$$

Previous Years' Questions

Sol 1: (D)

$$SO_3$$

 $+NaOH$
 $+H_2O + CO_2$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N

Sol 2: (C)

$$CHO \xrightarrow{OH^{-}} COO^{-}$$

$$CH_{2}OH$$

$$O$$

$$O$$

Sol 3: (C)

$$\begin{array}{c|c}
O & O \\
\hline
Ph & & \\
\hline
Ph & & \\
\hline
OH & & \\
\hline
Ph - C - CH_3 & \\
\hline
NaOH & \\
\hline
\end{array}$$

$$\begin{array}{ccc} \mathsf{Ph\text{-}COONa} \, + \, \mathsf{CHI}_{\scriptscriptstyle{3}} \\ \mathsf{F} & \mathsf{G} \end{array}$$

Sol 4; (A, C)

$$\begin{array}{c}
O \\
\parallel \\
R-C-NH_2+OH^- + Br_2 \longrightarrow R-C-NHBr \\
(A)
\end{array}$$

$$\begin{array}{ccc}
O & & O \\
\parallel & - \\
R-C-NHBr+OH^{-} \longrightarrow R-C-N-Br
\end{array}$$

$$\begin{array}{c}
(B) \\
\longrightarrow R-N=C=O+Br^{-}$$

$$(C)$$

Sol 5: (D)

CI—C-NH₂ + KOH + Br₂
$$\longrightarrow$$
(i)
CI—C-NHBi

An intermediate (ii)

Sol 6: (D)

$$CI \xrightarrow{\qquad \qquad C} \underbrace{\stackrel{\text{Slow}}{\underset{\text{(iii)}}{}}}_{\text{N-Br}} \underbrace{\stackrel{\text{Slow}}{\underset{\text{(iv)}}{}}}_{\text{N-C=O+Br-}}$$

Sol 7: (B) The rate determining step of Hofmann bromide reaction is unimolecular rearrangement of bromamide anion (iii) and no cross-products are formed when mixture of amides are taken.

$$CONH2 + CONH2$$

Sol 8: The two stereoisomers of 2-phenyl propanoic acid in the racemic mixture are :

COOH
$$COO\overset{*}{CH_3}$$
 $COO\overset{*}{CH_3}$ $COO\overset{*}$

and Ph-C-H
$$^{\text{COOH}}_{\text{I}}$$
 (B)

Here A and B are diastereomers.

Sol 9: Compound A of molecular formula $C_9H_7O_2Cl$ exist in keto and predominantly in enolic from B. Hence, A must be a carbonyl compound which contain α -H. Enolic forms of B predominates because of presence of intramolecular H-bonding.

Sol 10:

$$\begin{array}{c|c} CH_2CI & CH_2CN \\ \hline \hline MF & C_{e}H_{s}ONa/EtOH \\ \hline C_{e}H_{s}CHO \\ \hline \end{array}$$

$$C_6H_5-CH-CH-C_6H_5\xrightarrow{H_3O^*/\Delta}C=CH$$

$$\begin{array}{c}
SOCI_{2} \\
CH_{3}NH_{2}
\end{array}$$

$$CH_{3}HN-C$$

$$O$$

Sol 11: (A); Sol 12: (C)

$$CH_3 - CH_2 - C \equiv C - CH_2 - CH_2Br \xrightarrow{1.Mg/Ether \\ 2.CO_2}$$

$$J \xrightarrow{K} CH_3 - CH_2 - C \equiv C - CH_2 - COCl_2$$

$$J = CH_3 - CH_2 - C \equiv C - CH_2 - COOH$$

$$K = SOCI_3$$

Sol 13: (D)

$$O_2N$$
 O_1
 O_2
 O_2
 O_3
 O_4
 O_4
 O_4
 O_5
 O_5
 O_6
 O_7
 O_8
 O_8
 O_9
 O_9

(Picric Acid) (Barbituric Acid)

Sol 14: (B)

Sol 15: (B)

H COOH

$$COOH$$
 $COOH$
 $COOH$

Sol 16: (A)

$$Q \xrightarrow{\Delta} \qquad Q \xrightarrow{Q} \qquad Q$$

Sol 17: (A) Only amines undergo acetylation and not acid amides.

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Sol 18: (A) (i) - p; (ii) - r; (iii) - s; (iv) - q

$$C_{6}H_{5}-\mathring{C}H_{2}+CH_{2}+CH_{3}\mathring{O}^{\bullet}$$
 $C_{6}H_{5}-\mathring{C}H_{2}+CH_{2}+CH_{3}\mathring{O}^{\bullet}$
 $C_{6}H_{5}-\mathring{C}H_{2}+CO_{2}+Ph-CH_{2}-\mathring{C}-CH_{3}$
 $C_{6}H_{5}-\mathring{C}H_{2}+CO_{2}+Ph-CH_{2}-\mathring{C}-CH_{3}$
 $C_{6}H_{5}-\mathring{C}H_{2}+CH_{3}-CO-CH_{3}$

$$C_6H_5$$
 O
 CH_3
 C_6H_5

$$C_6H_5$$
 C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5

$$C_6H_5-CO_2+CH_3O^{\bullet}$$
 $C_6H_5^{\bullet}+CO_2$

Sol 19: (D)

Sol 20: (A, B, C, D)

(I)
$$CO_{Anhydrous\ AlCl_3/CuCl}$$
 CHO (III) $COCl\ H_2$ Pd-BaSO₄ CHO (IV) $CO_2Me\ DIBAL-H\ Toluene, -78°C$ CHO

Sol 21: (B)

$$+ H_{3}C - \overset{\circ}{C}H - CH_{3} \longrightarrow 0_{2} \longrightarrow 0_{1} \xrightarrow{C} CH_{3}$$

$$+ H_{3}C \xrightarrow{C} CH_{3} \longrightarrow 0_{2} \longrightarrow 0_{2}$$

$$+ H_{3}C \xrightarrow{C} CH_{3} \longrightarrow 0_{2} \longrightarrow 0_{2}$$

$$+ H_{3}C \xrightarrow{C} CH_{3} \longrightarrow 0_{2}$$

$$+ H_{3}C \xrightarrow{C} CH_{3} \longrightarrow 0_{2}$$

Sol 22: (A)

Sol 23: (C) NaBH₄ is a mild reducing agent. It selectively reduces aldehydic group.

Sol 24: (A)

OH OH COOH COOH
$$(II)$$
 $pKa=9.98$ (II) $pKa=4.17$ (IV) $pKa=4.37$

Decreasing order of acidic strength: III > IV > II > I

Sol 25: (5)

are soluble in aqueous NaOH.

Sol 26: (C)

COOH
$$O_2N$$
 COOH (-OH group is more activating)

HO OCH_3 OCH_3

Sol 27: (C)

$$\begin{array}{c} \text{H}_{3}\text{C} \longrightarrow \begin{array}{c} \text{O} \\ \text{II} \\ \text{C} \longrightarrow \text{NH}_{2} \end{array} \xrightarrow{\text{NaOH/Br}} \\ \text{Hoffmann brom-amide deg radation} \end{array} \begin{array}{c} \text{H}_{3}\text{C} \longrightarrow \begin{array}{c} \text{NH}_{2} \\ \text{O} \longrightarrow \begin{array}{c} \text{O} \\ \text{C} \longrightarrow \text{NH}_{2} \end{array} \end{array}$$

Sol 28: (A)

$$NH \xrightarrow{(i) \text{ KOH}} CH_2\text{-CI}$$

$$NH - CH_2$$

Sol 29: (C) Due to ortho effect o-hydroxy benzoic acid is strongest acid and correct order of decreasing K₃ is

COOH COOH OH OH COOH >
$$COOH$$
 > $COOH$ > OOH > OOH

Sol 30: (B) In decarboxylation, β -carbon acquire δ^- charge. Whenever δ^- charge is stabilized decarboxylation becomes simple. In (B) it is stabilized by-m and-o of C=O, which is best amongst the options offered.

Sol 31: (A, C, D)

COOH
$$COOH$$

$$COOH$$

$$COOH$$

$$COOH$$

$$COOH$$

$$COOH$$

$$CH_3$$

$$CH_3$$