Mathematics

(Chapter - 9) (Rational Numbers)
 (Class - VII)

Exercise 9.1

Question 1:

List five rational numbers between:
(i) $\quad-1$ and 0
(ii) $\quad-2$ and -1
(iii) $\frac{-4}{5}$ and $\frac{-2}{3}$
(iv) $\frac{-1}{2}$ and $\frac{2}{3}$

$\epsilon_{\text {nai }}$ Answer 1:

(i) $\quad-1$ and 0

Let us write -1 and 0 as rational numbers with denominator 6 .
$\Rightarrow \quad-1=\frac{-6}{6}$ and $0=\frac{0}{6}$
$\therefore \quad \frac{-6}{6}<\frac{-5}{6}<\frac{-4}{6}<\frac{-3}{6}<\frac{-2}{6}<\frac{-1}{6}<0$
$\Rightarrow \quad-1<\frac{-5}{6}<\frac{-2}{3}<\frac{-1}{2}<\frac{-1}{3}<\frac{-1}{6}<0$

Therefore, five rational numbers between -1 and 0 would be
$\frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2}, \frac{-1}{3}, \frac{-1}{6}$
(ii) $\quad-2$ and -1

Let us write -2 and -1 as rational numbers with denominator 6 .

$$
\begin{aligned}
& \Rightarrow \quad-2=\frac{-12}{6} \text { and }-1=\frac{-6}{6} \\
& \therefore \quad \frac{-12}{6}<\frac{-11}{6}<\frac{-10}{6}<\frac{-9}{6}<\frac{-8}{6}<\frac{-7}{6}<\frac{-6}{6} \\
& \Rightarrow \quad-2<\frac{-11}{6}<\frac{-5}{3}<\frac{-3}{2}<\frac{-4}{3}<\frac{-7}{6}<-1
\end{aligned}
$$

Therefore, five rational numbers between -2 and -1 would be $\frac{-11}{6}, \frac{-5}{3}, \frac{-3}{2}, \frac{-4}{3}, \frac{-7}{6}$

(iii) $\frac{-4}{5}$ and $\frac{-2}{3}$

Let us write $\frac{-4}{5}$ and $\frac{-2}{3}$ as rational numbers with the same denominators.
$\Rightarrow \quad \frac{-4}{5}=\frac{-36}{45}$ and $\frac{-2}{3}=\frac{-30}{45}$
$\therefore \quad \frac{-36}{45}<\frac{-35}{45}<\frac{-34}{45}<\frac{-33}{45}<\frac{-32}{45}<\frac{-31}{45}<\frac{-30}{45}$
$\Rightarrow \quad \frac{-4}{5}<\frac{-7}{9}<\frac{-34}{45}<\frac{-11}{15}<\frac{-32}{45}<\frac{-31}{45}<\frac{-2}{3}$
Therefore, five rational numbers between $\frac{-4}{5}$ and $\frac{-2}{3}$ would be $\frac{-7}{9}, \frac{-34}{45}, \frac{-11}{15}, \frac{-32}{45}, \frac{-31}{45}, \frac{-2}{3}$
(iv) $\frac{-1}{2}$ and $\frac{2}{3}$

Let us write $\frac{-1}{2}$ and $\frac{2}{3}$ as rational numbers with the same denominators.
$\Rightarrow \quad \frac{-1}{2}=\frac{-3}{6}$ and $\frac{2}{3}=\frac{4}{6}$
$\therefore \quad \frac{-3}{6}<\frac{-2}{6}<\frac{-1}{6}<0<\frac{1}{6}<\frac{2}{6}<\frac{3}{6}<\frac{4}{6}$
$\Rightarrow \quad \frac{-1}{2}<\frac{-1}{3}<\frac{-1}{6}<0<\frac{1}{6}<\frac{1}{3}<\frac{1}{2}<\frac{2}{3}$
Therefore, five rational numbers between $\frac{-1}{2}$ and $\frac{2}{3}$ would be $\frac{-1}{3}, \frac{-1}{6}, 0, \frac{1}{6}, \frac{1}{3}$.

Question 2:

Write four more rational numbers in each of the following patterns:
(i) $\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}$,
(ii) $\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}$,
(iii) $\frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24}$,
(iv) $\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9}$,

Eman Answer 2:

(i) $\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}$,
$\Rightarrow \quad \frac{-3 \times 1}{5 \times 1}, \frac{-3 \times 2}{5 \times 2}, \frac{-3 \times 3}{5 \times 3}, \frac{-3 \times 4}{5 \times 4}, \ldots \ldots \ldots$.
Therefore, the next four rational numbers of this pattern would be $\frac{-3 \times 5}{5 \times 5}, \frac{-3 \times 6}{5 \times 6}, \frac{-3 \times 7}{5 \times 7}, \frac{-3 \times 8}{5 \times 8}=\frac{-15}{25}, \frac{-18}{30}, \frac{-21}{35}, \frac{-24}{40}$
(ii) $\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}$,
$\Rightarrow \quad \frac{-1 \times 1}{4 \times 1}, \frac{-1 \times 2}{4 \times 2}, \frac{-1 \times 3}{4 \times 3}$,
Therefore, the next four rational numbers of this pattern would be $\frac{-1 \times 4}{4 \times 4}, \frac{-1 \times 5}{4 \times 5}, \frac{-1 \times 6}{4 \times 6}, \frac{-1 \times 7}{4 \times 7}=\frac{-4}{16}, \frac{-5}{20}, \frac{-6}{24}, \frac{-7}{28}$
(iii) $\frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24}$,
$\Rightarrow \quad \frac{-1 \times 1}{6 \times 1}, \frac{1 \times 2}{-6 \times 2}, \frac{1 \times 3}{-6 \times 3}, \frac{1 \times 4}{-6 \times 4}, \ldots \ldots .$.
Therefore, the next four rational numbers of this pattern would be $\frac{1 \times 5}{-6 \times 5}, \frac{1 \times 6}{-6 \times 6}, \frac{1 \times 7}{-6 \times 7}, \frac{1 \times 8}{-6 \times 8}=\frac{5}{-30}, \frac{6}{-36}, \frac{7}{-42}, \frac{8}{-48}$

(iv) $\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9}$,
$\Rightarrow \quad \frac{-2 \times 1}{3 \times 1}, \frac{2 \times 1}{-3 \times 1}, \frac{2 \times 2}{-3 \times 2}, \frac{2 \times 3}{-3 \times 3}$,
Therefore, the next four rational numbers of this pattern would be $\frac{2 \times 4}{-3 \times 4}, \frac{2 \times 5}{-3 \times 5}, \frac{2 \times 6}{-3 \times 6}, \frac{2 \times 7}{-3 \times 7}=\frac{8}{-12}, \frac{10}{-15}, \frac{12}{-18}, \frac{14}{-21}$

Question 3:

Give four rational numbers equivalent to:
(i) $\frac{-2}{7}$
(ii) $\frac{5}{-3}$
(iii) $\frac{4}{9}$

Eninisur 3:

(i) $\frac{-2}{7}$

$$
\frac{-2 \times 2}{7 \times 2}=\frac{-4}{14}, \frac{-2 \times 3}{7 \times 3}=\frac{-6}{21}, \frac{-2 \times 4}{7 \times 4}=\frac{-8}{28}, \frac{-2 \times 5}{7 \times 5}=\frac{-10}{35}
$$

Therefore, four equivalent rational numbers are $\frac{-4}{14}, \frac{-6}{21}, \frac{-8}{28}, \frac{-10}{35}$.
(ii) $\frac{5}{-3}$

$$
\frac{5 \times 2}{-3 \times 2}=\frac{10}{-6}, \frac{5 \times 3}{-3 \times 3}=\frac{15}{-9}, \frac{5 \times 4}{-3 \times 4}=\frac{20}{-12}, \frac{5 \times 5}{-3 \times 5}=\frac{25}{-15}
$$

Therefore, four equivalent rational numbers are $\frac{10}{-6}, \frac{15}{-9}, \frac{20}{-12}, \frac{25}{-15}$.
(iii) $\frac{4}{9}$

$$
\frac{4 \times 2}{9 \times 2}=\frac{8}{18}, \frac{4 \times 3}{9 \times 3}=\frac{12}{27}, \frac{4 \times 4}{9 \times 4}=\frac{16}{36}, \frac{4 \times 5}{9 \times 5}=\frac{20}{45}
$$

Therefore, four equivalent rational numbers are $\frac{8}{18}, \frac{12}{27}, \frac{16}{36}, \frac{20}{45}$.

Question 4:

Draw the number line and represent the following rational numbers on it:
(i) $\frac{3}{4}$
(ii) $\frac{-5}{8}$
(iii) $\frac{-7}{4}$
(iv) $\frac{7}{8}$

Enisi Answer 4:
(i) $\frac{3}{4}$
 $\frac{3}{4}$
(ii) $\frac{-5}{8}$

(iii) $\frac{-7}{4}$

(iv) $\frac{7}{8}$

Question 5:

The points P, Q, R, S, T, U, A and B on the number line are such that, $T R=R S=S U$ and $A P$ $=P Q=Q B$. Name the rational numbers represented by P, Q, R and S.

Emin Answer 5:

Each part which is between the two numbers is divided into 3 parts.
Therefore, $\quad \mathrm{A}=\frac{6}{3}, \mathrm{P}=\frac{7}{3}, \mathrm{Q}=\frac{8}{3}$ and $\mathrm{B}=\frac{9}{3}$
Similarly $\quad T=\frac{-3}{3}, R=\frac{-4}{3}, S=\frac{-5}{3}$ and $U=\frac{-6}{3}$
Thus, the rational numbers represented P, Q, R and S are $\frac{7}{3}, \frac{8}{3}, \frac{-4}{3}$ and $\frac{-5}{3}$ respectively.

Question 6:

Which of the following pairs represent the same rational numbers:
(i) $\frac{-7}{21}$ and $\frac{3}{9}$
(ii) $\frac{-16}{20}$ and $\frac{20}{-25}$
(iii) $\frac{-2}{-3}$ and $\frac{2}{3}$
(iv) $\frac{-3}{5}$ and $\frac{-12}{20}$
(v) $\frac{8}{-5}$ and $\frac{-24}{15}$
(vi) $\frac{1}{3}$ and $\frac{-1}{9}$
(vii) $\frac{-5}{-9}$ and $\frac{5}{-9}$

Eax Answer 6:
(i) $\frac{-7}{21}$ and $\frac{3}{9}$
$\Rightarrow \quad \frac{-7}{21}=\frac{-1}{3}$ and $\frac{3}{9}=\frac{1}{3}$
$\because \quad \frac{-1}{3} \neq \frac{1}{3}$
$\therefore \quad \frac{-7}{21} \neq \frac{3}{9}$
(ii) $\frac{-16}{20}$ and $\frac{20}{-25}$
$\Rightarrow \quad \frac{-16}{20}=\frac{-4}{5}$ and $\frac{20}{-25}=\frac{4}{-5}=\frac{-4}{5}$
[Converting into lowest term]
$\because \quad \frac{-4}{5}=\frac{-4}{5}$
$\therefore \quad \frac{-16}{20}=\frac{20}{-25}$
(iii) $\frac{-2}{-3}$ and $\frac{2}{3}$
$\Rightarrow \quad \frac{-2}{-3}=\frac{2}{3}$ and $\frac{2}{3}=\frac{2}{3}$
[Converting into lowest term]
$\because \quad \frac{2}{3}=\frac{2}{3}$
$\therefore \quad \frac{-2}{-3}=\frac{2}{3}$
(iv) $\frac{-3}{5}$ and $\frac{-12}{20}$

$$
\begin{aligned}
& \quad \Rightarrow \quad \frac{-3}{5}=\frac{-3}{5} \text { and } \frac{-12}{20}=\frac{-3}{5} \quad \text { [Converting into lowest term] } \\
& \because \quad \frac{-3}{5}=\frac{-3}{5} \\
& \therefore \\
& \frac{-3}{5}=\frac{-12}{20}
\end{aligned}
$$

(v) $\frac{8}{-5}$ and $\frac{-24}{15}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{8}{-5}=\frac{-8}{5} \text { and } \frac{-24}{15}=\frac{-8}{5} \\
& \because \quad \frac{-8}{5}=\frac{-8}{5} \\
& \therefore \quad \frac{8}{-5}=\frac{-24}{15}
\end{aligned}
$$

(vi) $\frac{1}{3}$ and $\frac{-1}{9}$

$$
\begin{array}{ll}
& \Rightarrow \quad \frac{1}{3}=\frac{1}{3} \text { and } \frac{-1}{9}=\frac{-1}{9} \quad \text { [Converting into lowest term] } \\
\because \quad & \frac{1}{3} \neq \frac{-1}{9} \\
\therefore & \frac{1}{3} \neq \frac{-1}{9}
\end{array}
$$

(vii) $\frac{-5}{-9}$ and $\frac{5}{-9}$

$$
\begin{array}{ll}
& \Rightarrow \quad \frac{-5}{-9}=\frac{5}{9} \text { and } \frac{5}{-9}=\frac{5}{9} \quad \text { [Converting into lowest term] } \\
\because \quad & \frac{5}{9} \neq \frac{5}{-9} \\
\therefore & \frac{-5}{-9} \neq \frac{5}{-9}
\end{array}
$$

Question 7:

Rewrite the following rational numbers in the simplest form:
(i) $\frac{-8}{6}$
(ii) $\frac{25}{45}$
(iii) $\frac{-44}{72}$
(iv) $\frac{-8}{10}$

teini Answer 7:

(i) $\frac{-8}{6}=\frac{-8 \div 2}{6 \div 2}=\frac{-4}{3}$
[H.C.F. of 8 and 6 is 2]
(ii) $\frac{25}{45}=\frac{25 \div 5}{45 \div 5}=\frac{5}{9}$
[H.C.F. of 25 and 45 is 5]
(iii) $\frac{-44}{72}=\frac{-44 \div 4}{72 \div 4}=\frac{-11}{18}$
[H.C.F. of 44 and 72 is 4]
(iv) $\frac{-8}{10}=\frac{-8 \div 2}{10 \div 2}=\frac{-4}{5}$
[H.C.F. of 8 and 10 is 2]

Question 8:

Fill in the boxes with the correct symbol out of $<,>$ and $=$:
(i) $\quad \frac{-5}{7} \square \frac{2}{3}$
(ii) $\frac{-4}{5} \square \frac{-5}{7}$
(iii) $\frac{-7}{8} \square \frac{14}{-16}$
(iv) $\frac{-8}{5} \square \frac{-7}{4}$
(v) $\quad \frac{1}{-3} \square \frac{-1}{4}$
(vi) $\frac{5}{-11} \square \frac{-5}{11}$
(vii) $0 \square \frac{-7}{6}$

teini Answer 8:

(i) $\frac{-5}{7} \square<\frac{2}{3}$ Since, the positive number if greater than negative number.
(ii) $\frac{-4 \times 7}{5 \times 7} \square \frac{-5 \times 5}{7 \times 5} \quad \Rightarrow \quad \frac{-28}{35} \square \frac{-25}{35} \quad \Rightarrow \quad \frac{-4}{5} \square \frac{-5}{7}$
(iii) $\frac{-7 \times 2}{8 \times 2} \square \frac{14 \times(-1)}{-16 \times(-1)} \Rightarrow \frac{-14}{16} \square \frac{-14}{16} \quad \Rightarrow \quad \frac{-7}{8} \square=\frac{14}{-16}$
(iv) $\frac{-8 \times 4}{5 \times 4} \square \frac{-7 \times 5}{4 \times 5} \quad \Rightarrow \quad \frac{-32}{20} \square \frac{-35}{20} \quad \Rightarrow \quad \frac{-8}{5} \square \frac{-7}{4}$
(v)

$$
\frac{1}{-3} \square \frac{-1}{4} \quad \Rightarrow \quad \frac{1}{-3} \square \frac{-1}{4}
$$

(vi) $\quad \frac{5}{-11} \square \frac{-5}{11} \quad \Rightarrow \quad \frac{5}{-11} \square \frac{-5}{11}$
(vii) $0 \square>\frac{-7}{6} \quad$ Since, 0 is greater than every negative number.

Question 9:

Which is greater in each of the following:
(i) $\frac{2}{3}, \frac{5}{2}$
(ii) $\frac{-5}{6}, \frac{-4}{3}$
(iii) $\frac{-3}{4}, \frac{2}{-3}$
(iv) $\frac{-1}{4}, \frac{1}{4}$
(v) $-3 \frac{2}{7},-3 \frac{4}{5}$

tein Answer 9:

(i) $\frac{2 \times 2}{3 \times 2}=\frac{4}{6}$ and $\frac{5 \times 3}{2 \times 3}=\frac{15}{6}$

Since $\frac{4}{6} \ll \frac{15}{6} \quad$ Therefore $\quad \frac{2}{3} \square<\frac{5}{2}$
(ii) $\frac{-5 \times 1}{6 \times 1}=\frac{-5}{6}$ and $\frac{-4 \times 2}{3 \times 2}=\frac{-8}{6}$

Since $\frac{-5}{6} \square \frac{-8}{6} \quad$ Therefore $\quad \frac{-5}{6} \square \frac{-4}{3}$
(iii) $\frac{-3 \times 3}{4 \times 3}=\frac{-9}{12}$ and $\frac{2 \times(-4)}{-3 \times(-4)}=\frac{-8}{12}$

Since $\frac{-9}{12} \square \frac{-8}{12} \quad$ Therefore $\quad \frac{-3}{4} \square<\frac{2}{-3}$
(iv) $\quad \frac{-1}{4} \ll \frac{1}{4} \quad$ Since positive number is always greater than negative number.
(v)

$$
-3 \frac{2}{7}=\frac{-23}{7}=\frac{-23 \times 5}{7 \times 5}=\frac{-115}{35} \text { and }-3 \frac{4}{5}=\frac{-19}{5}=\frac{-19 \times 7}{5 \times 7}=\frac{-133}{35}
$$

Since $\frac{-115}{35} \square \frac{-133}{35} \quad$ Therefore $\quad-3 \frac{2}{7} \square-3 \frac{4}{5}$

Question 10:

Write the following rational numbers in ascending order:
(i) $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$
(ii) $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3}$
(iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$

Emiui Answer 10:
(i) $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$

$$
\Rightarrow \quad \frac{-3}{5}<\frac{-2}{5}<\frac{-1}{5}
$$

(ii) $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3} \Rightarrow \frac{3}{9}, \frac{-2}{9}, \frac{-12}{9} \quad$ [Converting into same denominator]

$$
\text { Now } \quad \frac{-12}{9}<\frac{-2}{9}<\frac{3}{9} \quad \Rightarrow \quad \frac{-4}{3}<\frac{-2}{9}<\frac{1}{3}
$$

(iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$

$$
\Rightarrow \quad \frac{-3}{2}<\frac{-3}{4}<\frac{-3}{7}
$$

Exercise 9.2

Question 1:

Find the sum:
(i) $\frac{5}{4}+\left(\frac{-11}{4}\right)$
(ii) $\frac{5}{3}+\frac{3}{5}$
(iii) $\frac{-9}{10}+\frac{22}{15}$
(iv) $\frac{-3}{-11}+\frac{5}{9}$
(v) $\frac{-8}{19}+\frac{(-2)}{57}$
(vi) $\frac{-2}{3}+0$
(vii) $-2 \frac{1}{3}+4 \frac{3}{5}$

Emini Answer 1:

(i) $\frac{5}{4}+\left(\frac{-11}{4}\right)=\frac{5-11}{4}=\frac{-6}{4}=\frac{-3}{2}$
(ii) $\frac{5}{3}+\frac{3}{5}=\frac{5 \times 5}{3 \times 5}+\frac{3 \times 3}{5 \times 3}=\frac{25}{15}+\frac{9}{15}$

$$
=\frac{25+9}{15}=\frac{34}{15}=2 \frac{4}{15}
$$

[L.C.M. of 3 and 5 is 15]
(iii) $\frac{-9}{10}+\frac{22}{15}=\frac{-9 \times 3}{10 \times 3}+\frac{22 \times 2}{15 \times 2}=\frac{-27}{30}+\frac{44}{30}$
[L.C.M. of 10 and 15 is 30]

$$
=\frac{-27+44}{30}=\frac{17}{30}
$$

(iv) $\frac{-3}{-11}+\frac{5}{9}=\frac{-3 \times 9}{-11 \times 9}+\frac{5 \times 11}{9 \times 11}=\frac{27}{99}+\frac{55}{99} \quad$ [L.C.M. of 11 and 9 is 99]

$$
=\frac{27+55}{99}=\frac{82}{99}
$$

(v) $\frac{-8}{19}+\frac{(-2)}{57}=\frac{-8 \times 3}{19 \times 3}+\frac{(-2) \times 1}{57 \times 1}=\frac{-24}{57}+\frac{(-2)}{57}$ [L.C.M. of 19 and 57 is 57]

$$
=\frac{-24-2}{57}=\frac{-26}{57}
$$

(vi) $\frac{-2}{3}+0=\frac{-2}{3}$

(vii) $-2 \frac{1}{3}+4 \frac{3}{5}=\frac{-7}{3}+\frac{23}{5}=\frac{-7 \times 5}{3 \times 5}+\frac{23 \times 3}{5 \times 3}=\frac{-35}{15}+\frac{69}{15}$ [L.C.M. of 3 and 5 is 15]

$$
=\frac{-35+69}{15}=\frac{34}{15}=2 \frac{4}{15}
$$

Question 2:

Find:
(i) $\frac{7}{24}-\frac{17}{36}$
(ii) $\frac{5}{63}-\left(\frac{-6}{21}\right)$
(iii) $\frac{-6}{13}-\left(\frac{-7}{15}\right)$
(iv) $\frac{-3}{8}-\frac{7}{11}$
(v) $\quad-2 \frac{1}{9}-6$

Eain Answer 2:

(i) $\frac{7}{24}-\frac{17}{36}=\frac{7 \times 3}{24 \times 3}-\frac{17 \times 2}{36 \times 2}=\frac{21}{72}-\frac{34}{72}$
[L.C.M. of 24 and 36 is 72]

$$
=\frac{21-34}{72}=\frac{-13}{72}
$$

(ii) $\frac{5}{63}-\left(\frac{-6}{21}\right)=\frac{5 \times 1}{63 \times 1}-\left(\frac{-6 \times 3}{21 \times 3}\right)=\frac{5}{63}-\frac{-18}{63}$
[L.C.M. of 63 and 21 is 63]

$$
=\frac{5-(-18)}{63}=\frac{5+18}{63}=\frac{23}{63}
$$

(iii) $\frac{-6}{13}-\left(\frac{-7}{15}\right)=\frac{-6 \times 15}{13 \times 15}-\left(\frac{-7 \times 13}{15 \times 13}\right)=\frac{-90}{195}-\left(\frac{-91}{195}\right)$ [L.C.M. of 13 and 15 is 195]
$=\frac{-90-(-91)}{195}=\frac{-90+91}{195}=\frac{1}{195}$
(iv) $\frac{-3}{8}-\frac{7}{11}=\frac{-3 \times 11}{8 \times 11}-\frac{7 \times 8}{11 \times 8}=\frac{-33}{88}-\frac{56}{88}$
[L.C.M. of 8 and 11 is 88]
$=\frac{-33-56}{88}=\frac{-89}{88}=-1 \frac{1}{88}$
(v) $-2 \frac{1}{9}-6=\frac{-19}{9}-\frac{6}{1}=\frac{-19 \times 1}{9 \times 1}-\frac{6 \times 9}{1 \times 9}$
[L.C.M. of 9 and 1 is 9]

$$
=\frac{-19}{9}-\frac{54}{9}=\frac{-19-54}{9}=\frac{-73}{9}=-8 \frac{1}{9}
$$

Question 3:

Find the product:
(i) $\frac{9}{2} \times\left(\frac{-7}{4}\right)$
(ii) $\frac{3}{10} \times(-9)$
(iii) $\frac{-6}{5} \times \frac{9}{11}$
(iv) $\frac{3}{7} \times\left(\frac{-2}{5}\right)$
(v) $\frac{3}{11} \times \frac{2}{5}$
(vi) $\frac{3}{-5} \times \frac{5}{3}$

Emin Answer 3:

(i) $\frac{9}{2} \times\left(\frac{-7}{4}\right)=\frac{9 \times(-7)}{2 \times 4}=\frac{-63}{8}=-7 \frac{7}{8}$
(ii) $\frac{3}{10} \times(-9)=\frac{3 \times(-9)}{10}=\frac{-27}{10}=-2 \frac{7}{10}$
(iii) $\frac{-6}{5} \times \frac{9}{11}=\frac{(-6) \times 9}{5 \times 11}=\frac{-54}{55}$
(iv) $\frac{3}{7} \times\left(\frac{-2}{5}\right)=\frac{3 \times(-2)}{7 \times 5}=\frac{-6}{35}$
(v) $\quad \frac{3}{11} \times \frac{2}{5}=\frac{3 \times 2}{11 \times 5}=\frac{6}{55}$
(vi) $\frac{3}{-5} \times\left(\frac{-5}{3}\right)=\frac{3 \times(-5)}{-5 \times 3}=1$

Question 4:

Find the value of:
(i) $\quad(-4) \div \frac{2}{3}$
(ii) $\frac{-3}{5} \div 2$
(iii) $\frac{-4}{5} \div(-3)$
(iv) $\frac{-1}{8} \div \frac{3}{4}$
(v) $\frac{-2}{13} \div \frac{1}{7}$
(vi) $\frac{-7}{12} \div\left(\frac{2}{13}\right)$
(vii) $\frac{3}{13} \div\left(\frac{-4}{65}\right)$

teini Answer 4:

(i) $(-4) \div \frac{2}{3}=(-4) \times \frac{3}{2}=(-2) \times 3=-6$
(ii) $\frac{-3}{5} \div 2=\frac{-3}{5} \times \frac{1}{2}=\frac{(-3) \times 1}{5 \times 2}=\frac{-3}{10}$
(iii) $\frac{-4}{5} \div(-3)=\frac{(-4)}{5} \times \frac{1}{(-3)}=\frac{(-4) \times 1}{5 \times(-3)}=\frac{4}{15}$
(iv) $\frac{-1}{8} \div \frac{3}{4}=\frac{-1}{8} \times \frac{4}{3}=\frac{(-1) \times 1}{2 \times 3}=\frac{-1}{6}$
(v) $\frac{-2}{13} \div \frac{1}{7}=\frac{-2}{13} \times \frac{7}{1}=\frac{(-2) \times 7}{13 \times 1}=\frac{-14}{13}=-1 \frac{1}{13}$
(vi) $\frac{-7}{12} \div\left(\frac{-2}{13}\right)=\frac{-7}{12} \times \frac{13}{(-2)}=\frac{(-7) \times 13}{12 \times(-2)}=\frac{-91}{24}=3 \frac{19}{24}$
(vii) $\frac{3}{13} \div\left(\frac{-4}{65}\right)=\frac{3}{13} \times \frac{65}{(-4)}=\frac{3 \times(-5)}{1 \times 4}=\frac{-15}{4}=-3 \frac{3}{4}$

