Mathematics

(Chapter – 9) (Rational Numbers) (Class – VII)

Exercise 9.1

Question 1:

List five rational numbers between:

(i)	-1 and 0	(ii)	-2 and -1
(iii)	$\frac{-4}{5}$ and $\frac{-2}{3}$	(iv)	$\frac{-1}{2}$ and $\frac{2}{3}$

(i) -

-1 and 0

Let us write -1 and 0 as rational numbers with denominator 6.

$$\Rightarrow -1 = \frac{-6}{6} \text{ and } 0 = \frac{0}{6}$$

$$\therefore \frac{-6}{6} < \frac{-5}{6} < \frac{-4}{6} < \frac{-3}{6} < \frac{-2}{6} < \frac{-1}{6} < 0$$

$$\Rightarrow -1 < \frac{-5}{6} < \frac{-2}{3} < \frac{-1}{2} < \frac{-1}{3} < \frac{-1}{6} < 0$$

Therefore, five rational numbers between -1 and 0 would be $\frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2}, \frac{-1}{3}, \frac{-1}{6}$

(ii)

-2 and -1

Let us write -2 and -1 as rational numbers with denominator 6.

$$\Rightarrow -2 = \frac{-12}{6} \text{ and } -1 = \frac{-6}{6}$$

$$\therefore \frac{-12}{6} < \frac{-11}{6} < \frac{-10}{6} < \frac{-9}{6} < \frac{-8}{6} < \frac{-7}{6} < \frac{-6}{6}$$

$$\Rightarrow -2 < \frac{-11}{6} < \frac{-5}{3} < \frac{-3}{2} < \frac{-4}{3} < \frac{-7}{6} < -1$$

Therefore, five rational numbers between -2 and -1 would be $\frac{-11}{6}, \frac{-5}{3}, \frac{-3}{2}, \frac{-4}{3}, \frac{-7}{6}$

(iii)
$$\frac{-4}{5}$$
 and $\frac{-2}{3}$
Let us write $\frac{-4}{5}$ and $\frac{-2}{3}$ as rational numbers with the same denominators.
 $\Rightarrow \quad \frac{-4}{5} = \frac{-36}{45}$ and $\frac{-2}{3} = \frac{-30}{45}$
 $\therefore \quad \frac{-36}{45} < \frac{-35}{45} < \frac{-34}{45} < \frac{-33}{45} < \frac{-32}{45} < \frac{-31}{45} < \frac{-30}{45}$
 $\Rightarrow \quad \frac{-4}{5} < \frac{-7}{9} < \frac{-34}{45} < \frac{-11}{15} < \frac{-32}{45} < \frac{-31}{45} < \frac{-2}{3}$

Therefore, five rational numbers between $\frac{-4}{5}$ and $\frac{-2}{3}$ would be $\frac{-7}{9}, \frac{-34}{45}, \frac{-11}{15}, \frac{-32}{45}, \frac{-31}{45}, \frac{-2}{3}$

(iv)
$$\frac{-1}{2}$$
 and $\frac{2}{3}$

Let us write $\frac{-1}{2}$ and $\frac{2}{3}$ as rational numbers with the same denominators. $\Rightarrow \quad \frac{-1}{2} = \frac{-3}{6} \text{ and } \frac{2}{3} = \frac{4}{6}$ $\therefore \quad \frac{-3}{6} < \frac{-2}{6} < \frac{-1}{6} < 0 < \frac{1}{6} < \frac{2}{6} < \frac{3}{6} < \frac{4}{6}$ $\Rightarrow \quad \frac{-1}{2} < \frac{-1}{3} < \frac{-1}{6} < 0 < \frac{1}{6} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3}$

Therefore, five rational numbers between $\frac{-1}{2}$ and $\frac{2}{3}$ would be

$$\frac{-1}{3}, \frac{-1}{6}, 0, \frac{1}{6}, \frac{1}{3}.$$

Question 2:

Write four more rational numbers in each of the following patterns:

- $\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}, \dots$ (i) $\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}, \dots$ (ii)
- $\frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24}, \dots$ (iii) (iv) $\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9}, \dots$

Answer 2:

 $\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}, \dots$ (i) $\frac{-3\times1}{5\times1}, \frac{-3\times2}{5\times2}, \frac{-3\times3}{5\times3}, \frac{-3\times4}{5\times4}, \dots$ \Rightarrow

Therefore, the next four rational numbers of this pattern would be $\frac{-3\times5}{5\times5}, \frac{-3\times6}{5\times6}, \frac{-3\times7}{5\times7}, \frac{-3\times8}{5\times8} = \frac{-15}{25}, \frac{-18}{30}, \frac{-21}{35}, \frac{-24}{40}$

(ii)
$$\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}, \dots$$

$$\frac{-1\times 1}{4\times 1}, \frac{-1\times 2}{4\times 2}, \frac{-1\times 3}{4\times 3}, \dots$$

Therefore, the next four rational numbers of this pattern would be $\frac{-1 \times 4}{4 \times 4}, \frac{-1 \times 5}{4 \times 5}, \frac{-1 \times 6}{4 \times 6}, \frac{-1 \times 7}{4 \times 7} = \frac{-4}{16}, \frac{-5}{20}, \frac{-6}{24}, \frac{-7}{28}$

(iii)
$$\frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{3}$$

$$\Rightarrow$$

 \Rightarrow

 $\frac{4}{-24},\dots$ -1×1 1×2 1×3 1×4

$$6 \times 1$$
 ' -6×2 ' -6×3 ' -6×4 '

Therefore, the next four rational numbers of this pattern would be $\frac{1 \times 5}{-6 \times 5}, \frac{1 \times 6}{-6 \times 6}, \frac{1 \times 7}{-6 \times 7}, \frac{1 \times 8}{-6 \times 8} = \frac{5}{-30}, \frac{6}{-36}, \frac{7}{-42}, \frac{8}{-48}$

(iv)
$$\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9}, \dots$$

$$\Rightarrow \frac{-2 \times 1}{3 \times 1}, \frac{2 \times 1}{-3 \times 1}, \frac{2 \times 2}{-3 \times 2}, \frac{2 \times 3}{-3 \times 3}, \dots$$

Therefore, the next four rational numbers of this pattern would be

$$\frac{2 \times 4}{-3 \times 4}, \frac{2 \times 5}{-3 \times 5}, \frac{2 \times 6}{-3 \times 6}, \frac{2 \times 7}{-3 \times 7} = \frac{8}{-12}, \frac{10}{-15}, \frac{12}{-18}, \frac{14}{-21}$$

Question 3:

Give four rational numbers equivalent to:

(i)
$$\frac{-2}{7}$$
 (ii) $\frac{5}{-3}$ (iii) $\frac{4}{9}$
(i) $\frac{-2}{7}$
(i) $\frac{-2}{7}$
 $\frac{-2\times2}{7\times2} = \frac{-4}{14}, \frac{-2\times3}{7\times3} = \frac{-6}{21}, \frac{-2\times4}{7\times4} = \frac{-8}{28}, \frac{-2\times5}{7\times5} = \frac{-10}{35}$
Therefore, four equivalent rational numbers are $\frac{-4}{14}, \frac{-6}{21}, \frac{-8}{28}, \frac{-10}{35}$.
(ii) $\frac{5}{-3}$
 $\frac{5\times2}{-3\times2} = \frac{10}{-6}, \frac{5\times3}{-3\times3} = \frac{15}{-9}, \frac{5\times4}{-3\times4} = \frac{20}{-12}, \frac{5\times5}{-3\times5} = \frac{25}{-15}$
Therefore, four equivalent rational numbers are $\frac{10}{-6}, \frac{15}{-9}, \frac{20}{-12}, \frac{25}{-15}$.
(iii) $\frac{4}{9}$
 $\frac{4\times2}{9\times2} = \frac{8}{18}, \frac{4\times3}{9\times3} = \frac{12}{27}, \frac{4\times4}{9\times4} = \frac{16}{36}, \frac{4\times5}{9\times5} = \frac{20}{45}$
Therefore, four equivalent rational numbers are $\frac{8}{18}, \frac{12}{27}, \frac{16}{36}, \frac{20}{45}$.

Question 4:

Draw the number line and represent the following rational numbers on it:

Question 5:

The points P, Q, R, S, T, U, A and B on the number line are such that, TR = RS = SU and AP = PQ = QB. Name the rational numbers represented by P, Q, R and S.

Answer 5:

Each part which is between the two numbers is divided into 3 parts.

Therefore, $A = \frac{6}{3}, P = \frac{7}{3}, Q = \frac{8}{3} \text{ and } B = \frac{9}{3}$ Similarly $T = \frac{-3}{3}, R = \frac{-4}{3}, S = \frac{-5}{3} \text{ and } U = \frac{-6}{3}$

Thus, the rational numbers represented P, Q, R and S are $\frac{7}{3}$, $\frac{8}{3}$, $\frac{-4}{3}$ and $\frac{-5}{3}$ respectively.

Question 6:

Which of the following pairs represent the same rational numbers:

(i)	$\frac{-7}{21}$ and $\frac{3}{9}$
(ii)	$\frac{-16}{20}$ and $\frac{20}{-25}$
(iii)	$\frac{-2}{-3}$ and $\frac{2}{3}$
(iv)	$\frac{-3}{5}$ and $\frac{-12}{20}$
(v)	$\frac{8}{-5}$ and $\frac{-24}{15}$
(vi)	$\frac{1}{3}$ and $\frac{-1}{9}$
(vii)	$\frac{-5}{-9}$ and $\frac{5}{-9}$

Exact Answer 6:				
(i)	$\frac{-7}{21}$ and $\frac{3}{9}$			
\Rightarrow	$\frac{-7}{21} = \frac{-1}{3}$ and $\frac{3}{9} = \frac{1}{3}$	[Converting into lowest term]		
	$\frac{-1}{3} \neq \frac{1}{3}$			
<i>.</i>	$\frac{-7}{21} \neq \frac{3}{9}$			
(ii)	$\frac{-16}{20}$ and $\frac{20}{-25}$			
\Rightarrow	$\frac{-16}{20} = \frac{-4}{5}$ and $\frac{20}{-25} = \frac{4}{-5} = \frac{-4}{5}$	[Converting into lowest term]		
•••	$\frac{-4}{5} = \frac{-4}{5}$			
	$\frac{-16}{20} = \frac{20}{-25}$			
(iii)	$\frac{-2}{-3}$ and $\frac{2}{3}$			
\Rightarrow	$\frac{-2}{-3} = \frac{2}{3}$ and $\frac{2}{3} = \frac{2}{3}$	[Converting into lowest term]		
	$\frac{2}{3} = \frac{2}{3}$			
<i>.</i>	$\frac{-2}{-3} = \frac{2}{3}$			
(iv)	$\frac{-3}{5}$ and $\frac{-12}{20}$			
	$\Rightarrow \frac{-3}{5} = \frac{-3}{5} \text{ and } \frac{-12}{20} = \frac{-3}{5}$	[Converting into lowest term]		
	$\frac{-3}{5} = \frac{-3}{5}$			
	$\frac{-3}{5} = \frac{-12}{20}$			

(v)
$$\frac{8}{-5}$$
 and $\frac{-24}{15}$
 $\Rightarrow \frac{8}{-5} = \frac{-8}{5}$ and $\frac{-24}{15} = \frac{-8}{5}$
 $\therefore \frac{-8}{5} = \frac{-8}{5}$
 $\therefore \frac{8}{-5} = \frac{-24}{15}$

[Converting into lowest term]

(vi)
$$\frac{1}{3}$$
 and $\frac{-1}{9}$
 $\Rightarrow \quad \frac{1}{3} = \frac{1}{3}$ and $\frac{-1}{9} = \frac{-1}{9}$
 $\therefore \quad \frac{1}{3} \neq \frac{-1}{9}$
 $\therefore \quad \frac{1}{3} \neq \frac{-1}{9}$

[Converting into lowest term]

(vii)
$$\frac{-5}{-9}$$
 and $\frac{5}{-9}$
 $\Rightarrow \quad \frac{-5}{-9} = \frac{5}{9}$ and $\frac{5}{-9} = \frac{5}{9}$ [Converting into lowest term]
 $\therefore \quad \frac{5}{9} \neq \frac{5}{-9}$
 $\therefore \quad \frac{-5}{-9} \neq \frac{5}{-9}$

Question 7:

Rewrite the following rational numbers in the simplest form:

(i)
$$\frac{-8}{6}$$
 (ii) $\frac{25}{45}$ (iii) $\frac{-44}{72}$ (iv) $\frac{-8}{10}$
(i) $\frac{-8}{6} = \frac{-8 \div 2}{6 \div 2} = \frac{-4}{3}$ [H.C.F. of 8 and 6 is 2]

(ii)
$$\frac{25}{45} = \frac{25 \div 5}{45 \div 5} = \frac{5}{9}$$
 [H.C.F. of 25 and 45 is 5]

(iii)
$$\frac{-44}{72} = \frac{-44 \div 4}{72 \div 4} = \frac{-11}{18}$$
 [H.C.F. of 44 and 72 is 4]
(iv) $\frac{-8}{10} = \frac{-8 \div 2}{10 \div 2} = \frac{-4}{5}$ [H.C.F. of 8 and 10 is 2]

Question 8:

Fill in the boxes with the correct symbol out of <, > and =:

(i)	$\frac{-5}{7}$	(ii)	$\frac{-4}{5} \boxed{-5}{7}$	(iii)	$\frac{-7}{8} \boxed{14}_{-16}$	(iv)	$\frac{-8}{5} \square \frac{-7}{4}$
(v)	$\frac{1}{-3} \square \frac{-1}{4}$	(vi)	$\frac{5}{-11} \square \frac{-5}{11}$	(vii)	$0 \boxed{-\frac{7}{6}}$		

Answer 8:

(i) $\frac{-5}{7} < \frac{2}{3}$ Since, the positive number if greater than negative number.

(ii)
$$\frac{-4\times7}{5\times7} \square \frac{-5\times5}{7\times5} \implies \frac{-28}{35} \square \frac{-25}{35} \implies \frac{-4}{5} \square \frac{-5}{7}$$

(iii)
$$\frac{-7\times2}{8\times2} \square \frac{14\times(-1)}{-16\times(-1)} \Rightarrow \frac{-14}{16} \square \frac{-14}{16} \implies \frac{-7}{8} \square \frac{14}{-16}$$

(iv)
$$\frac{-8\times4}{5\times4} \square \frac{-7\times5}{4\times5} \implies \frac{-32}{20} \square \frac{-35}{20} \implies \frac{-8}{5} \square \frac{-7}{4}$$

(v)
$$\frac{1}{-3} \square \frac{-1}{4} \implies \frac{1}{-3} \square \frac{-1}{4}$$

(vi)
$$\frac{5}{-11} \square \frac{-5}{11} \Rightarrow \frac{5}{-11} \square \frac{-5}{11}$$

 $\sum \frac{-7}{6}$ Since, 0 is greater than every negative number.

Question 9:

Which is greater in each of the following:

(i)
$$\frac{2}{3}, \frac{5}{2}$$
 (ii) $\frac{-5}{6}, \frac{-4}{3}$ (iii) $\frac{-3}{4}, \frac{2}{-3}$ (iv) $\frac{-1}{4}, \frac{1}{4}$
(v) $-3\frac{2}{7}, -3\frac{4}{5}$

Answer 9:

(i) $\frac{2 \times 2}{3 \times 2} = \frac{4}{6}$ and $\frac{5 \times 3}{2 \times 3} = \frac{15}{6}$ Since $\frac{4}{6} \le \frac{15}{6}$ Therefore $\frac{2}{3} \le \frac{5}{2}$ (ii) $\frac{-5 \times 1}{6 \times 1} = \frac{-5}{6}$ and $\frac{-4 \times 2}{3 \times 2} = \frac{-8}{6}$ Since $\frac{-5}{6} \ge \frac{-8}{6}$ Therefore $\frac{-5}{6} \ge \frac{-4}{3}$ (iii) $\frac{-3 \times 3}{4 \times 3} = \frac{-9}{12}$ and $\frac{2 \times (-4)}{-3 \times (-4)} = \frac{-8}{12}$ Since $\frac{-9}{12} \le \frac{-8}{12}$ Therefore $\frac{-3}{4} \le \frac{2}{-3}$ (iv) $\frac{-1}{4} \le \frac{1}{4}$ Since positive number is always greater than negative number. (v) $-3\frac{2}{7} = \frac{-23}{7} = \frac{-23 \times 5}{7 \times 5} = \frac{-115}{35}$ and $-3\frac{4}{5} = \frac{-19}{5} = \frac{-19 \times 7}{5 \times 7} = \frac{-133}{35}$ Since $\frac{-115}{35} \ge \frac{-133}{35}$ Therefore $-3\frac{2}{7} \ge -3\frac{4}{5}$

Question 10:

Write the following rational numbers in ascending order:

(i)
$$\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$$

(ii) $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3}$
(iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$

Answer 10:

(i)
$$\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$$

 $\Rightarrow \frac{-3}{5} < \frac{-2}{5} < \frac{-1}{5}$
(ii) $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3} \Rightarrow$
Now $\frac{-12}{9} < \frac{-2}{9} < \frac{3}{9}$
(iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$
 $\Rightarrow \frac{-3}{2} < \frac{-3}{4} < \frac{-3}{7}$

 $\frac{3}{9}, \frac{-2}{9}, \frac{-12}{9}$ [Converting into same denominator]

$$\frac{-4}{3} < \frac{-2}{9} < \frac{1}{3}$$

 \Rightarrow

Exercise 9.2

Question 1:

Find the sum:

(i)	$\frac{5}{4} + \left(\frac{-11}{4}\right)$	(ii)	$\frac{5}{3} + \frac{3}{5}$
(iii)	$\frac{-9}{10} + \frac{22}{15}$	(iv)	$\frac{-3}{-11} + \frac{5}{9}$
(v)	$\frac{-8}{19} + \frac{(-2)}{57}$	(vi)	$\frac{-2}{3} + 0$
(vii)	$-2\frac{1}{3}+4\frac{3}{5}$		

Answer 1:

(i)
$$\frac{5}{4} + \left(\frac{-11}{4}\right) = \frac{5-11}{4} = \frac{-6}{4} = \frac{-3}{2}$$

(ii) $\frac{5}{3} + \frac{3}{5} = \frac{5 \times 5}{3 \times 5} + \frac{3 \times 3}{5 \times 3} = \frac{25}{15} + \frac{9}{15}$ [L.C.M. of 3 and 5 is 15]
 $= \frac{25+9}{15} = \frac{34}{15} = 2\frac{4}{15}$
(iii) $\frac{-9}{10} + \frac{22}{15} = \frac{-9 \times 3}{10 \times 3} + \frac{22 \times 2}{15 \times 2} = \frac{-27}{30} + \frac{44}{30}$ [L.C.M. of 10 and 15 is 30]
 $= \frac{-27+44}{30} = \frac{17}{30}$
(iv) $\frac{-3}{-11} + \frac{5}{9} = \frac{-3 \times 9}{-11 \times 9} + \frac{5 \times 11}{9 \times 11} = \frac{27}{99} + \frac{55}{99}$ [L.C.M. of 11 and 9 is 99]

$$= \frac{27+55}{99} = \frac{82}{99}$$
(v) $\frac{-8}{19} + \frac{(-2)}{57} = \frac{-8\times3}{19\times3} + \frac{(-2)\times1}{57\times1} = \frac{-24}{57} + \frac{(-2)}{57}$ [L.C.M. of 19 and 57 is 57]
 $= \frac{-24-2}{57} = \frac{-26}{57}$

(vi)
$$\frac{-2}{3} + 0 = \frac{-2}{3}$$

(vii)
$$-2\frac{1}{3}+4\frac{3}{5} = \frac{-7}{3}+\frac{23}{5} = \frac{-7\times5}{3\times5}+\frac{23\times3}{5\times3} = \frac{-35}{15}+\frac{69}{15}$$
 [L.C.M. of 3 and 5 is 15]
 $=\frac{-35+69}{15} = \frac{34}{15} = 2\frac{4}{15}$

Question 2:

Find:

(i) $\frac{7}{24} - \frac{17}{36}$ (ii) $\frac{5}{63} - \left(\frac{-6}{21}\right)$ (iii) $\frac{-6}{13} - \left(\frac{-7}{15}\right)$ (iv) $\frac{-3}{8} - \frac{7}{11}$ (v) $-2\frac{1}{9} - 6$

Answer 2:

(i)
$$\frac{7}{24} - \frac{17}{36} = \frac{7 \times 3}{24 \times 3} - \frac{17 \times 2}{36 \times 2} = \frac{21}{72} - \frac{34}{72}$$
 [L.C.M. of 24 and 36 is 72]
 $= \frac{21 - 34}{72} = \frac{-13}{72}$
(ii) $\frac{5}{63} - \left(\frac{-6}{21}\right) = \frac{5 \times 1}{63 \times 1} - \left(\frac{-6 \times 3}{21 \times 3}\right) = \frac{5}{63} - \frac{-18}{63}$ [L.C.M. of 63 and 21 is 63]
 $= \frac{5 - (-18)}{63} = \frac{5 + 18}{63} = \frac{23}{63}$
(iii) $\frac{-6}{13} - \left(\frac{-7}{15}\right) = \frac{-6 \times 15}{13 \times 15} - \left(\frac{-7 \times 13}{15 \times 13}\right) = \frac{-90}{195} - \left(\frac{-91}{195}\right)$ [L.C.M. of 13 and 15 is 195]
 $= \frac{-90 - (-91)}{195} = \frac{-90 + 91}{195} = \frac{1}{195}$
(iv) $\frac{-3}{8} - \frac{7}{11} = \frac{-3 \times 11}{8 \times 11} - \frac{7 \times 8}{11 \times 8} = \frac{-33}{88} - \frac{56}{88}$ [L.C.M. of 8 and 11 is 88]
 $= \frac{-33 - 56}{88} = \frac{-89}{88} = -1\frac{1}{88}$
(v) $-2\frac{1}{9} - 6 = \frac{-19}{9} - \frac{6}{1} = \frac{-19 \times 1}{9 \times 1} - \frac{6 \times 9}{1 \times 9}$ [L.C.M. of 9 and 1 is 9]
 $= \frac{-19}{9} - \frac{54}{9} = \frac{-19 - 54}{9} = \frac{-73}{9} = -8\frac{1}{9}$

Question 3:

Find the product:

(i)
$$\frac{9}{2} \times \left(\frac{-7}{4}\right)$$

(ii) $\frac{3}{10} \times (-9)$
(iii) $\frac{-6}{5} \times \frac{9}{11}$
(iv) $\frac{3}{7} \times \left(\frac{-2}{5}\right)$
(v) $\frac{3}{11} \times \frac{2}{5}$
(vi) $\frac{3}{-5} \times \frac{5}{3}$
(iv) $\frac{3}{-5} \times \frac{5}{3}$

(i) $\frac{9}{2} \times \left(\frac{-7}{2}\right) - \frac{9 \times (-7)}{2} - \frac{-63}{2} - \frac{7}{2}$

(i)
$$\frac{1}{2} \times \left(\frac{1}{4}\right) = \frac{1}{2 \times 4} = \frac{1}{8} = -\frac{7}{8}$$

(ii) $\frac{3}{10} \times (-9) = \frac{3 \times (-9)}{10} = \frac{-27}{10} = -2\frac{7}{10}$
(iii) $\frac{-6}{5} \times \frac{9}{11} = \frac{(-6) \times 9}{5 \times 11} = \frac{-54}{55}$
(iv) $\frac{3}{7} \times \left(\frac{-2}{5}\right) = \frac{3 \times (-2)}{7 \times 5} = \frac{-6}{35}$

(v)
$$\frac{3}{11} \times \frac{2}{5} = \frac{3 \times 2}{11 \times 5} = \frac{6}{55}$$

(vi)
$$\frac{3}{-5} \times \left(\frac{-5}{3}\right) = \frac{3 \times (-5)}{-5 \times 3} = 1$$

Question 4:

Find the value of:

(i)
$$(-4) \div \frac{2}{3}$$

(ii) $\frac{-3}{5} \div 2$
(iii) $\frac{-4}{5} \div (-3)$
(iv) $\frac{-1}{8} \div \frac{3}{4}$
(v) $\frac{-2}{13} \div \frac{1}{7}$
(vi) $\frac{-7}{12} \div \left(\frac{2}{13}\right)$
(vii) $\frac{3}{13} \div \left(\frac{-4}{65}\right)$

Answer 4:

(i)	$(-4) \div \frac{2}{3} = (-4) \times \frac{3}{2} = (-2) \times 3 = -6$
(ii)	$\frac{-3}{5} \div 2 = \frac{-3}{5} \times \frac{1}{2} = \frac{(-3) \times 1}{5 \times 2} = \frac{-3}{10}$
(iii)	$\frac{-4}{5} \div (-3) = \frac{(-4)}{5} \times \frac{1}{(-3)} = \frac{(-4) \times 1}{5 \times (-3)} = \frac{4}{15}$
(iv)	$\frac{-1}{8} \div \frac{3}{4} = \frac{-1}{8} \times \frac{4}{3} = \frac{(-1) \times 1}{2 \times 3} = \frac{-1}{6}$
(v)	$\frac{-2}{13} \div \frac{1}{7} = \frac{-2}{13} \times \frac{7}{1} = \frac{(-2) \times 7}{13 \times 1} = \frac{-14}{13} = -1\frac{1}{13}$
(vi)	$\frac{-7}{12} \div \left(\frac{-2}{13}\right) = \frac{-7}{12} \times \frac{13}{(-2)} = \frac{(-7) \times 13}{12 \times (-2)} = \frac{-91}{24} = 3\frac{19}{24}$
(vii)	$\frac{3}{13} \div \left(\frac{-4}{65}\right) = \frac{3}{13} \times \frac{65}{(-4)} = \frac{3 \times (-5)}{1 \times 4} = \frac{-15}{4} = -3\frac{3}{4}$

